--- title: AFL初次实践 date: 2019-07-09 14:46:07 tags: - AFL - 模糊测试 categories: 二进制 --- 这篇文章是对afl的简单使用,可大致分为黑盒测试和白盒测试两个部分。白盒测试从对目标程序的插桩编译开始,然后使用fuzzer对其模糊测试发现崩溃,最后对测试的代码覆盖率进行评估。黑盒测试则演示得较简略。 参考:https://paper.seebug.org/841/#_1 **部署afl** > ``` > wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz > tar -zxvf afl-latest.tgz > cd afl-2.52b/ > make > sudo make install > ``` **部署qemu** > ``` > $ CPU_TARGET=x86_64 ./build_qemu_support.sh > [+] Build process successful! > [*] Copying binary... > -rwxr-xr-x 1 han han 10972920 7月 9 10:43 ../afl-qemu-trace > [+] Successfully created '../afl-qemu-trace'. > [!] Note: can't test instrumentation when CPU_TARGET set. > [+] All set, you can now (hopefully) use the -Q mode in afl-fuzz! > ``` ------------- # 白盒测试 ## 目标程序编译 1. 源代码 ``` #undef _FORTIFY_SOURCE #include #include #include void vulnerable_function() { char buf[128]; read(STDIN_FILENO, buf, 256); } int main(int argc, char** argv) { vulnerable_function(); write(STDOUT_FILENO, "Hello, World\n", 13); } ``` 2. gcc编译(不插桩) ```-fprofile-arcs -ftest-coverage $ gcc v1.c -o v1 $ ./v1 what Hello, World ``` 生成v1的目的一是为了和afl-gcc的编译做对比,二是为黑盒测试做铺垫。 3. 使用afl-gcc进行编译 *-fno-stack-protector 该选项会禁止stack canary保护 -z execstack 允许堆栈可执行* ``` $ ../afl-2.52b/afl-gcc -fno-stack-protector -z execstack v1.c -o v1-afl afl-cc 2.52b by afl-as 2.52b by [+] Instrumented 2 locations (64-bit, non-hardened mode, ratio 100%). ``` ## 测试插桩程序 **afl-showmap** 跟踪单个输入的执行路径,并打印程序执行的输出、捕获的元组(tuples),tuple用于获取分支信息,从而衡量衡量程序覆盖情况。 ``` $ ./afl-showmap -o /dev/null -- ../vuln/v1 <<(echo test) afl-showmap 2.52b by [*] Executing '../vuln/v1'... -- Program output begins -- Hello, World -- Program output ends -- [-] PROGRAM ABORT : No instrumentation detected Location : main(), afl-showmap.c:773 ``` ``` $ ./afl-showmap -o /dev/null -- ../vuln/v1-afl <<(echo test) afl-showmap 2.52b by [*] Executing '../vuln/v1-afl'... -- Program output begins -- Hello, World -- Program output ends -- [+] Captured 1 tuples in '/dev/null'. ``` 可见,afl-gcc相对于gcc的不同在于采用了插桩计算覆盖率,在这个实例程序中捕捉到了一个元组 ## 执行FUZZER 1. 修改core 在执行afl-fuzz前,如果系统配置为将核心转储文件(core)通知发送到外部程序。 ``` $ ./afl-fuzz -i ../vuln/testcase/ -o ../vuln/out/ ../vuln/v1-afl afl-fuzz 2.52b by [+] You have 2 CPU cores and 2 runnable tasks (utilization: 100%). [*] Checking CPU core loadout... [+] Found a free CPU core, binding to #0. [*] Checking core_pattern... [-] Hmm, your system is configured to send core dump notifications to an external utility. This will cause issues: there will be an extended delay between stumbling upon a crash and having this information relayed to the fuzzer via the standard waitpid() API. To avoid having crashes misinterpreted as timeouts, please log in as root and temporarily modify /proc/sys/kernel/core_pattern, like so: echo core >/proc/sys/kernel/core_pattern [-] PROGRAM ABORT : Pipe at the beginning of 'core_pattern' Location : check_crash_handling(), afl-fuzz.c:7275 ``` 将导致将崩溃信息发送到Fuzzer之间的延迟增大,进而可能将崩溃被误报为超时,所以我们得临时修改core_pattern文件,如下所示: ``` echo core >/proc/sys/kernel/core_pattern ``` 2. 通用fuzz语法 afl-fuzz对于直接从stdin接受输入的目标二进制文件,通常的语法是: ``` $ ./afl-fuzz -i testcase_dir -o findings_dir / path / to / program [... params ...] ``` 对于从文件中获取输入的程序,使用“@@”标记目标命令行中应放置输入文件名的位置。模糊器将替换为您: ``` $ ./afl-fuzz -i testcase_dir -o findings_dir / path / to / program @@ ``` 此时afl会给我们返回一些信息,这里提示我们有些测试用例无效 ``` afl-fuzz 2.52b by [+] You have 2 CPU cores and 2 runnable tasks (utilization: 100%). [*] Checking CPU core loadout... [+] Found a free CPU core, binding to #0. [*] Checking core_pattern... [*] Setting up output directories... [+] Output directory exists but deemed OK to reuse. [*] Deleting old session data... [+] Output dir cleanup successful. [*] Scanning '../vuln/testcase/'... [+] No auto-generated dictionary tokens to reuse. [*] Creating hard links for all input files... [*] Validating target binary... [*] Attempting dry run with 'id:000000,orig:1'... [*] Spinning up the fork server... [+] All right - fork server is up. len = 3, map size = 1, exec speed = 295 us [*] Attempting dry run with 'id:000001,orig:2'... len = 23, map size = 1, exec speed = 125 us [!] WARNING: No new instrumentation output, test case may be useless. [+] All test cases processed. [!] WARNING: Some test cases look useless. Consider using a smaller set. [+] Here are some useful stats: Test case count : 1 favored, 0 variable, 2 total Bitmap range : 1 to 1 bits (average: 1.00 bits) Exec timing : 125 to 295 us (average: 210 us) [*] No -t option specified, so I'll use exec timeout of 20 ms. [+] All set and ready to roll! ``` 3. 状态窗口 我们可以看到afl很快就给我们制造了崩溃 ``` american fuzzy lop 2.52b (v1-afl) ┌─ process timing ─────────────────────────────────────┬─ overall results ─────┐ │ run time : 0 days, 0 hrs, 4 min, 19 sec │ cycles done : 2477 │ │ last new path : 0 days, 0 hrs, 2 min, 27 sec │ total paths : 3 │ │ last uniq crash : 0 days, 0 hrs, 4 min, 19 sec │ uniq crashes : 1 │ │ last uniq hang : 0 days, 0 hrs, 2 min, 12 sec │ uniq hangs : 1 │ ├─ cycle progress ────────────────────┬─ map coverage ─┴───────────────────────┤ │ now processing : 2 (66.67%) │ map density : 0.00% / 0.00% │ │ paths timed out : 0 (0.00%) │ count coverage : 1.00 bits/tuple │ ├─ stage progress ────────────────────┼─ findings in depth ────────────────────┤ │ now trying : havoc │ favored paths : 1 (33.33%) │ │ stage execs : 1433/1536 (93.29%) │ new edges on : 2 (66.67%) │ │ total execs : 2.32M │ total crashes : 93.1k (1 unique) │ │ exec speed : 0.00/sec (zzzz...) │ total tmouts : 8 (1 unique) │ ├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤ │ bit flips : 0/1152, 0/1149, 0/1143 │ levels : 2 │ │ byte flips : 0/144, 0/14, 0/10 │ pending : 0 │ │ arithmetics : 0/888, 0/25, 0/0 │ pend fav : 0 │ │ known ints : 0/98, 0/390, 0/440 │ own finds : 1 │ │ dictionary : 0/0, 0/0, 0/0 │ imported : n/a │ │ havoc : 2/1.50M, 0/819k │ stability : 100.00% │ │ trim : 11.88%/64, 80.00% ├────────────────────────┘ └─────────────────────────────────────────────────────┘ [cpu000:102%] │ │ stage execs : 1432/1536 (93.23%) │ new edges on : 2 (66.67%) │ +++ Testing aborted by user +++ │ total crashes : 93.1k (1 unique) │ [+] We're done here. Have a nice day! │ total tmouts : 8 (1 unique) │ ├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤ ``` 由上面AFL状态窗口: ① Process timing:Fuzzer运行时长、以及距离最近发现的路径、崩溃和挂起(超时)经过了多长时间。 已经运行4m19s,距离上一个最新路径已经过去2min27s,距离上一个独特崩溃已经过去4min19s(可见找到崩溃的速度非常快),距离上一次挂起已经过去2m12s。 ② Overall results:Fuzzer当前状态的概述。 ③ Cycle progress:我们输入队列的距离。队列一共有3个用例,现在是第二个,66.67% ④ Map coverage:目标二进制文件中的插桩代码所观察到覆盖范围的细节。 ⑤ Stage progress:Fuzzer现在正在执行的文件变异策略、执行次数和执行速度。 ⑥ Findings in depth:有关我们找到的执行路径,异常和挂起数量的信息。 ⑦ Fuzzing strategy yields:关于突变策略产生的最新行为和结果的详细信息。 ⑧ Path geometry:有关Fuzzer找到的执行路径的信息。 ⑨ CPU load:CPU利用率 ## afl何时结束 (1) 状态窗口中”cycles done”字段颜色变为绿色该字段的颜色可以作为何时停止测试的参考,随着周期数不断增大,其颜色也会由洋红色,逐步变为黄色、蓝色、绿色。当其变为绿色时,继续Fuzzing下去也很难有新的发现了,这时便可以通过Ctrl-C停止afl-fuzz。 (2) 距上一次发现新路径(或者崩溃)已经过去很长时间 (3) 目标程序的代码几乎被测试用例完全覆盖 ## 处理输出结果 > 确定造成这些crashes的bug是否可以利用,怎么利用? afl在fuzzing的过程中同时也产生了这些文件 ``` $ tree ../vuln/out/ ../vuln/out/ ├── crashes │   ├── id:000000,sig:11,src:000000,op:havoc,rep:64 │   └── README.txt ├── fuzz_bitmap ├── fuzzer_stats ├── hangs ├── plot_data └── queue ├── id:000000,orig:1 └── id:000001,orig:2 3 directories, 7 files ``` 在输出目录中创建了三个子目录并实时更新: * queue: 测试每个独特执行路径的案例,以及用户提供的所有起始文件。 * crashes: 导致被测程序接收致命信号的独特测试用例(例如,SIGSEGV,SIGILL,SIGABRT)。条目按接收信号分组。 * hangs: 导致测试程序超时的独特测试用例。将某些内容归类为挂起之前的默认时间限制是1秒内的较大值和-t参数的值。可以通过设置AFL_HANG_TMOUT来微调该值,但这很少是必需的。 * 崩溃和挂起被视为“唯一” :如果相关的执行路径涉及在先前记录的故障中未见的任何状态转换。如果可以通过多种方式达到单个错误,那么在此过程中会有一些计数通货膨胀,但这应该会迅速逐渐减少。 * fuzzer_stats:afl-fuzz的运行状态。 * plot_data:用于afl-plot绘图。 ## 崩溃类型和可利用性 1. triage_crashes AFL源码的experimental目录中有一个名为triage_crashes.sh的脚本,可以帮助我们触发收集到的crashes。例如下面的例子中,11代表了SIGSEGV信号,有可能是因为缓冲区溢出导致进程引用了无效的内存;06代表了SIGABRT信号,可能是执行了abort\assert函数或double free导致,这些结果可以作为简单的参考。 ``` $ experimental/crash_triage/triage_crashes.sh ../vuln/out/ ../vuln/v1-afl 2>&1 | grep SIGNAL +++ ID 000000, SIGNAL 11 +++ ``` 2. crashwalk 如果你想得到更细致的crashes分类结果,以及导致crashes的具体原因,那么crashwalk就是不错的选择之一。这个工具基于gdb的exploitable插件,安装也相对简单,在ubuntu上,只需要如下几步即可: ``` $ apt-get install gdb golang $ mkdir tools $ cd tools $ git clone https://github.com/jfoote/exploitable.git $ mkdir go $ export GOPATH=~/tools/go $ export CW_EXPLOITABLE=~/tools/exploitable/exploitable/exploitable.py $ go get -u github.com/bnagy/crashwalk/cmd/... ``` - [ ] 这部分我好像还没完成 3. afl-collect ``` $ afl-collect -d crashes.db -e gdb_script -j 8 -r ../vuln/out/ ../vuln/testcase -- ../vuln/v1-afl *** GDB+EXPLOITABLE SCRIPT OUTPUT *** [00001] out:id:000000,sig:11,src:000000,op:havoc,rep:64.................: EXPLOITABLE [ReturnAv (1/22)] *** ***************************** *** ``` ------------- # 代码覆盖率及其相关概念 > 代码覆盖率是模糊测试中一个极其重要的概念,使用代码覆盖率可以评估和改进测试过程,执行到的代码越多,找到bug的可能性就越大,毕竟,在覆盖的代码中并不能100%发现bug,在未覆盖的代码中却是100%找不到任何bug的。 > 代码覆盖率是一种度量代码的覆盖程度的方式,也就是指源代码中的某行代码是否已执行;对二进制程序,还可将此概念理解为汇编代码中的某条指令是否已执行。其计量方式很多,但无论是GCC的GCOV还是LLVM的SanitizerCoverage,都提供函数(function)、基本块(basic-block)、边界(edge)三种级别的覆盖率检测。 ## 计算代码覆盖率 **GCOV**:插桩生成覆盖率 **LCOV**:图形展示覆盖率 **afl-cov**:调用前两个工具计算afl测试用例的覆盖率 1. gcc插桩 ``` $ gcc -fprofile-arcs -ftest-coverage ./v1.c -o v1-cov ``` 2. afl-cov计算之前fuzzer的过程(结束后) ``` $ ../afl-2.52b/afl-cov/afl-cov -d ./out/ --enable-branch-coverage -c . -e "cat AFL_FILE | ./v1-cov AFL_FILE" Non-zero exit status '1' for CMD: /usr/bin/readelf -a cat *** Imported 2 new test cases from: ./out//queue [+] AFL test case: id:000000,orig:1 (0 / 2), cycle: 0 lines......: 100.0% (6 of 6 lines) functions..: 100.0% (2 of 2 functions) branches...: no data found Coverage diff (init) id:000000,orig:1 diff (init) -> id:000000,orig:1 New src file: /home/han/ck/vuln/v1.c New 'function' coverage: main() New 'function' coverage: vulnerable_function() New 'line' coverage: 11 New 'line' coverage: 12 New 'line' coverage: 13 New 'line' coverage: 6 New 'line' coverage: 8 New 'line' coverage: 9 ++++++ BEGIN - first exec output for CMD: cat ./out//queue/id:000000,orig:1 | ./v1-cov ./out//queue/id:000000,orig:1 Hello, World ++++++ END [+] AFL test case: id:000001,orig:2 (1 / 2), cycle: 0 lines......: 100.0% (6 of 6 lines) functions..: 100.0% (2 of 2 functions) branches...: no data found [+] Processed 2 / 2 test cases. [+] Final zero coverage report: ./out//cov/zero-cov [+] Final positive coverage report: ./out//cov/pos-cov lines......: 100.0% (6 of 6 lines) functions..: 100.0% (2 of 2 functions) branches...: no data found [+] Final lcov web report: ./out//cov/web/index.html ``` 3. LCOV展示 ![](https://res.cloudinary.com/dozyfkbg3/image/upload/v1562570048/afl/1.png) ------------------ # 黑盒测试(使用qemu ``` $ ./afl-fuzz -i ../vuln/testcase/ -o ../vuln/outQemu -Q ../vuln/v1 american fuzzy lop 2.52b (v1) ┌─ process timing ─────────────────────────────────────┬─ overall results ─────┐ │ run time : 0 days, 0 hrs, 0 min, 41 sec │ cycles done : 232 │ │ last new path : none yet (odd, check syntax!) │ total paths : 2 │ │ last uniq crash : 0 days, 0 hrs, 0 min, 41 sec │ uniq crashes : 1 │ │ last uniq hang : none seen yet │ uniq hangs : 0 │ ├─ cycle progress ────────────────────┬─ map coverage ─┴───────────────────────┤ │ now processing : 0* (0.00%) │ map density : 0.04% / 0.04% │ │ paths timed out : 0 (0.00%) │ count coverage : 1.00 bits/tuple │ ├─ stage progress ────────────────────┼─ findings in depth ────────────────────┤ │ now trying : havoc │ favored paths : 1 (50.00%) │ │ stage execs : 255/256 (99.61%) │ new edges on : 1 (50.00%) │ │ total execs : 121k │ total crashes : 33 (1 unique) │ │ exec speed : 2860/sec │ total tmouts : 0 (0 unique) │ ├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤ │ bit flips : 0/56, 0/54, 0/50 │ levels : 1 │ │ byte flips : 0/7, 0/5, 0/1 │ pending : 0 │ │ arithmetics : 0/392, 0/25, 0/0 │ pend fav : 0 │ │ known ints : 0/36, 0/138, 0/44 │ own finds : 0 │ │ dictionary : 0/0, 0/0, 0/0 │ imported : n/a │ │ havoc : 1/120k, 0/0 │ stability : 100.00% │ │ trim : 82.61%/5, 0.00% ├────────────────────────┘ ^C────────────────────────────────────────────────────┘ [cpu000:102%] ``` - [ ] 待完成对黑盒测试原理的分析